PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of gas velocity on formation of carbon deposits on AS-SOFC fuel electrodes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The elevated operating temperatures of solid oxide fuel cells (SOFC) create favorable kinetics for the oxidation of carboncontaining gas mixtures, which may include carbon monoxide and light organic compounds. The presence of carbon-based components in the fuel might result in the formation and deposition of soot on the surface of the anode in a fuel cell. This process depends on and is driven by the prevailing thermodynamic, kinetic and electrochemical conditions. The present study was premised on the following: in addition to the aforementioned parameters providing for the operating conditions, gas velocity also affects the formation of deposits on the anode. The role of fuel gas velocity in the process was studied experimentally using 5 cm x 5 cm anode supported solid oxide fuel cells (AS-SOFC) at 750°C at velocities in the range 0.1 to 0.9 m/s. It was found that carbon deposition was clearly observable approximately 24 hours after the necessary conditions were attained. An intense stage of performance degradation typically lasts for a period of up to 60 hours. An increase in fuel flow velocity leads to an acceleration in the carbon deposition process. The correlation between velocity and cell degradation due to this phenomenon was determined and the corresponding function was proposed.
Rocznik
Strony
322--328
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
  • Department of High Temperature Electrochemical Processes, Augustowka 36, 02-981 Warsaw, Poland
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
  • Department of High Temperature Electrochemical Processes, Augustowka 36, 02-981 Warsaw, Poland
autor
  • Department of High Temperature Electrochemical Processes, Augustowka 36, 02-981 Warsaw, Poland
  • Department of High Temperature Electrochemical Processes, Augustowka 36, 02-981 Warsaw, Poland
autor
  • Department of High Temperature Electrochemical Processes, Augustowka 36, 02-981 Warsaw, Poland
Bibliografia
  • [1] A. Silva, C. Malfatti, I. Iler, Thermodynamic analysis of ethanol steam reforming using gibbs energy minimization method: A detailed study of the conditions of carbon deposition, International Journal of Hydrogen Energy 34 (2009) 4321–4330.
  • [2] S. Singhal, K. Kendall, High temperature solid oxide fuel cells: fundamentals, design and applications, 2003.
  • [3] S. Srinivasan, Fuel cells. From fundamentals to applications, 2006.
  • [4] C. Song, Fuel processing for low-temperature and high-temperature fuel cells. challenges, and opportunities for sustainable development in the 21st century, Catalysis Today 17 (2002) 17–49.
  • [5] E. S. Inc., Fuel cell handbook (Seventh edition), 2004.
  • [6] Y. Liu, Performance evaluation of several commercial alloys in a reducing environment, Journal of Power Sources 179 (1) (2008) 286–291.
  • [7] J. Macek, B. Novosel, M. Marinsek, Ni-ysz sofc anodes – minimization, Journal of the European Ceramic Society 27 (2007) 487–491.
  • [8] F. Cayan, M. Zhi, S. Pakalapati, I. Celik, N. Wu, R. Gemmen, Effects of coal syngas impurities on anodes of solid oxide fuel cells, Journal of Power Sources 185 (2008) 595–602.
  • [9] T. Chen, W. Wang, H. Miao, T. Li, C. Xu, Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas, Journal of Power Sources 196 (2011) 2461–2468.
  • [10] V. Subotic, C. Schluckner, C. Hochenauer, An experimental and numerical study of performance of large planar esc-sofcs and experimental investigation of carbon depositions, Journal of the Energy Institute 89 (2016) 121–137.
  • [11] Y. Zhang, Z. Yang, M. Wang, Understanding on the carbon deposition on the nickel/yttrium-stabilized zirconia anode caused by the co containing fuels, Journal of Power Sources 279 (2015) 759–765.
  • [12] T. Takeguchi, R. Kikuchi, T. Yano, K. Eguchi, K. Murata, Effect of precious metal addition to ni–ysz cermet on reforming of ch4 and electrochemical activity as sofc anode, Catalysis Today 84 (3/4) (2003) 217–222.
  • [13] T. Takeguch, Y. Kani, T. Yano, R. Kikuchi, K. Eguchi, K. Tsujimoto, Y. Uchida, A. Ueno, K. Omoshiki, M. Aizawa, Study on steam reforming of ch4 and c2 hydrocarbons and carbon deposition on ni–ysz cermets, Journal of Power Sources 112 (2) (2005) 588–595.
  • [14] T. Borowiecki, A. Gotebiowski, B. Stasifiska, Effects of small moo3 additions on the properties of nickel catalysts for the steam reforming of hydrocarbons, Applied Catalysis A: General 153 (1997) 141–156.
  • [15] D. Niakolas, J. Ouweltjes, G. Rietveld, V. Dracopoulos, S. Neophytides, Au-doped ni/gdc as a new anode for sofcs operating under rich ch4 internal steam reforming, International Journal of Hydrogen Energy 35 (15) (2010) 7898–7904.
  • [16] J. Koh, Y. Yoo, J. Park, H. Lim, Carbon deposition and cell performance of ni-ysz anode support sofc with methane fuel, Solid State Ionics 149 (2002) 157–166.
  • [17] V. Alzate-Restrepo, J. Hill, Carbon deposition on ni/ysz anodes exposed to co/h2 feed, Journal of Power Sources 142 (2005) 194–199.
  • [18] D. Singh, E. Hernandez-Pacheco, P. Hutton, N. Patel, M. Mann, Carbon deposition in an sofc fueled by tar-laden biomass gas: a thermodynamic analysis, Journal of Power Sources 142 (2005) 194–199.
  • [19] K. Girona, J. Laurencin, J. Fouletier, F. Lefebvre-Joud, Carbon deposition in ch4/co2 operated sofc: Simulation and experimentation studies, Journal of Power Sources 210 (2012) 381–391.
  • [20] K. Eguchi, H. Kojo, T. Takeguchi, R. Kikuchi, K. Sasaki, Fuel flexibility in power generation by solid oxide fuel cells, Solid State Ionics 152-153 (2002) 411–416.
  • [21] J. Milewski, A mathematical model of sofc: A proposal, Fuel Cells 12 (5) (2012) 709–721.
  • [22] J. Kupecki, J. Milewski, J. Jewulski, Investigation of sofc material properties for plant-level modeling, Central European Journal of Chemistry 11 (5) (2013) 664–671.
  • [23] C. Huang, S. Shy, C. Chien, C. Lee, Parametric study of anodic microstructures to cell performance of planar solid oxide fuel cell using measured porous transport properties, Journal of Power Sources 195 (8) (2010) 2260–2265.
  • [24] J. Kupecki, J. Milewski, A. Szczesniak, R. Bernat, K. Motylinski, Dynamic numerical analysis of cross-, co-, and counter-current flow con- figuration of a 1 kw-class solid oxide fuel cell stack, International Journal of Hydrogen Energy 40 (45) (2015) 15834–15844.
  • [25] R. Kluczowski, M. Krauz, M. Kawalec, J. Ouweltjes, Near net shape manufacturing of planar anode supported solid oxide fuel cells by using ceramic injection molding and screen printing, Journal of Power Sources 268 (2014) 752–757.
  • [26] J. Kupecki, Modeling platform for a micro-chp system with sofc operating under load changes, Applied Mechanics and Materials 607 (2014) 205–208.
  • [27] K. Badyda, J. Kupecki, J. Milewski, Modelling of integrated gasification hybrid power systems, Rynek Energii 88 (3) (2010) 74–79.
  • [28] J. Kupecki, J. Jewulski, K. Badyda, Selection of a fuel processing method for sofc-based micro-chp system, Rynek Energii 97 (6) (2011) 157–162.
  • [29] Z. Jaworski, B. Zakrzewska, P. Pianko-Oprych, On thermodynamic equilibrium of carbon deposition from gaseous c-h-o mixtures: Updating for nanotubes, Reviews in Chemical Engineering 33 (3) (2002) 217–235.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6cfbbeb-695b-49bc-8662-e0dc999462e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.