PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of dryout localization using a five-equation model of annular flow for boiling in minichannels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Detailed studies have suggested that the critical heat flux in the form of dryout in minichannels occurs when the combined effects of entrainment, deposition, and evaporation of the film make the film flow rate go gradually and smoothly to zero. Most approaches so far used the mass balance equation for the liquid film with appropriate formulations for the rate of deposition and entrainment respectively. It must be acknowledged that any discrepancy in determination of deposition and entrainment rates, together with cross-correlations between them, leads to the loss of accuracy of model predictions. Conservation equations relating the primary parameters are established for the liquid film and vapor core. The model consists of three mass balance equations, for liquid in the film as well as two-phase core and the gas phase itself. These equations are supplemented by the corresponding momentum equations for liquid in the film and the two-phase core. Applicability of the model has been tested on some experimental data.
Słowa kluczowe
Rocznik
Strony
123--139
Opis fizyczny
Bibliogr. 22 poz., rys., wz.
Twórcy
autor
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Energy and Industrial Apparatus, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Energy and Industrial Apparatus, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Collier J.G., Thome J.R.: Convection boiling and condensation, 3rd Edn. McGraw-Hill, New York 1994.
  • [2] Mikielewicz D., Wajs J., Gliński M., Zrooga A-B.R.S.: Experimental investigation of dryout of SES 36, R134a, R123 and ethanol in vertical small diameter tubes. Exp. Therm. Fluid Sci. 44(2013), 556–564.
  • [3] Anwar Z., Palm B., Khodabandeh R: Flow boiling heat transfer and dryout characteristics of R152a in a vertical mini-channel. Exp. Therm. Fluid Sci. 53(2014), 207–217.
  • [4] Anwar Z., Palm B.E., Khodabandeh R: Dryout characteristics of natural and synthetic refrigerants in single vertical mini-channels. Exp. Therm. Fluid Sci. 68(2015), 257–267.
  • [5] Mastrullo R., Mauro A.W., Thome J.R., Vanoli G.P., Viscito L.: Critical heat flux: Performance of R1234yf, R1234ze and R134a in an aluminum multiminichannel heat sink at high saturation temperatures. Int. J. Therm. Sci. 106(2016), 1–17.
  • [6] Mastrullo R., Mauro A.W., Viscito L.: Experimental CHF for low-GWP fluids and R134a. Effect of the Lh/D ratio at low and high mass velocities. Int. J. Heat Mass Tran. 109(2017), 1200–1216.
  • [7] Li H., Anglart H.: Prediction of dryout and post-dryout heat transfer using a twophase CFD model. Int. J. Heat Mass Tran. 99(2016), 839–850.
  • [8] Okawa T., Kotani A., Kataoka I., Naito M.: Prediction of the critical heat flux in annular regime in various vertical channels., Nucl. Eng. Des. 229(2004), 2-3, 223–236.
  • [9] Celata G.P., Mishima K., Zummo G.: Critical heat flux for saturated flow boiling of water in vertical tubes. Int. J. Heat Mass Tran. 44(2001), 22, 4323–4331.
  • [10] Whalley P.B, Hutchinson P., Hewitt G.F.: The calculation of critical heat flux in forced convection boiling. Proc. 5th Int. Heat Transfer Conf., B6.11, 290–294, 1974.
  • [11] Kataoka I., Ishii M.: Mechanism and correlation of droplet entrainment and deposition in annular two-phase flow. Nuclear Regulatory Commision NUREG/CR – 2885, ANL 82-44, 1982.
  • [12] Ueda T., Inoue M., Nagatome S.: Critical heat flux and droplet entrainment rate in boiling of falling liquid films. Int. J. Heat Mass Tran. 24(1981), 7, 1257–1266.
  • [13] Mishima K., Ishii M.: Flow regime transition criteria for upward two-phase flow in vertical tubes. Int. J. Heat Mass Tran. 27(1984), 5, 723–737.
  • [14] Sedler B., Mikielewicz J.: A simplified model of the boiling crisis. Int. J. Heat Mass Tran. 24(1981), 3, 431–438.
  • [15] Mikielewicz D., Mikielewicz J., Wajs J., Gliński M.: Modelling of dryout process in an annular flow. Heat Transf. Res. 39(2008), 7, 587–596 DOI:10.1615/HeatTransRes.v39.i7.30.
  • [16] Gliński, M.: Study of critical heat flux in small diameter channels, PhD thesis, Gdańsk University of Technology, Gdańsk 2010.
  • [17] Mikielewicz D., Gliński M., Zrooga A-B.R., Mikielewicz J.: A model of liquid film evaporation in annular flow in minichannels. Proc. 8th ECI Int. Conference on Boiling and Condensation Heat Transfer, Lausanne, 3–7 June 2012.
  • [18] Qu W., Mudawar I.: Flow boiling heat transfer in two-phase micro channel heat sinks – II. Annular two-phase flow model. Int. J. Heat Mass Tran. 46(2003), 15, 2773–2784.
  • [19] Taitel Y., Dukler A.E.: A model for predicting flow regime transitions in horizontal and near horizontal gas–liquid flow. AIChE J. 22(1976), 1, 47–55.
  • [20] Müller-Steinhagen R., Heck K.: A simple friction pressure drop correlation for two-phase flow in pipes. Chem. Eng. Progress 20(1986), 6, 297-308.
  • [21] Mikielewicz D., Mikielewicz J.: A common method for calculation of flow boiling and flow condensation heat transfer coefficients in minichannels with account of nonadiabatic effects. Heat Transfer Engineering 32(2011), 13-14, 1173-1181.
  • [22] Mikielewicz D., Wajs J., Gliński M., Mikielewicz J.: Thermovisual investigation of dryout process in annular flow. International Symposium on Convective Heat and Mass Transfer in Sustainable Energy (CONV-09), Hammamet, 26.04-1.05.2009. (DOI:10.1615/ICHMT.2009.CONV.1310).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6ce1725-fc71-4d56-bb3e-a0da402bff4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.