Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nowadays, hydraulic fracturing is one of the most common treatments for both conventional and unconventional fields, a stimulation technique designed to increase well production through the reduction of flow resistance caused by the drilling process or genuine reservoir properties. In this article the planar, three-dimensional numerical model of hydraulic fracturing treatment is presented. Based on the given model, the influence analysis of the basic technological parameters of the fracturing in a directional well on fracture propagation was conducted. The presented analysis shows the crucial role of numerical modeling in the process of hydraulic fracturing treatment design. The outcomes allowed us to identify the sensitivity of the obtained fracturing effects on the change of the treatment of technical parameters.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
677--690
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland
Bibliografia
- [1] Barree R.D., Conway M.W.: Experimental and Numerical Modeling of Convective Proppant Transport. SPE-28564-P. 1995.
- [2] Baree B., Svatek K.: GOHFER User Manual, 2015.
- [3] Cross E., Trammel S., Grieser B., London S., Wilcoxson M.: The Mississippian Lime: Not New, But Reinvented, www.oilindependents.org/the-mississippian-lime-not-new-but-reinvented/.
- [4] Daneshy A.A.: On the Design of Vertical Hydraulic Fractures. SPE-3654-PA, 1973.
- [5] Hubbert M., Willis D.G.: Mechanics of Hydraulic Fracturing. In: Petroleum Transactions, SPE-686-G, 1957.
- [6] Lei Xiao, Gang Zhao: Study of 2-D and 3-D Hydraulic Fractures with Non-uniform Conductivity and Geometry Using Source and Sink Function Methods. SPE 162542, 2012.
- [7] LONGBOTHAM 6 API Number 15-081-21960-0100, Kansas Geologica Survey, Oil and Gas Well. http://chasm.kgs.ku.edu/ords/qualified.well_page.DisplayWell?f_kid=1043954674.
- [8] Schlumberger: LONGBOTHAM 6 API Number 15-081-21960-0100, Kansas Geologica Survey, Oil and Gas Well, http://maps.kgs.ku.edu/oilgas/index.cfm?extent-type=well&extentvalue=1043954674.
- [9] nZone Ball Drop Multistage stimulation system, 2012.
- [10] Perkins T.K., Kern L.R.: Widths of Hydraulic Fractures. SPE 89- PA, 1961.
- [11] Popp M.: Completion and Stimulation Optimization of Montney Wells in the Karr Field. University of Calgary, Calgary 2014.
- [12] Qi L., 3D Reservoir Modeling of Mississippian St. Louis Carbonate Reservoir Systems. Kansas Geological Survey, The University of Kansas, 2004.
- [13] Raymond P., Sorenson A.: Dynamic Model for the Permian Panhandle and Hugoton Fields. Western Anadarko Basin, AAPG Bulletin 89(7), July 2005, pp. 921-938.
- [14] Settari A., Cleary M.P.: Three Dimensional Simulation of Hydraulic Fracturing. SPE-10504-PA, 1984.
- [15] Matson S.: The Mississippian Lime: Kinematics of a Play - Structure, Reservoir Characterization and Production Performance of the Horizontal Mississippian Play. Search and Discovery Article no. 110184, June 2015.
- [16] Valko P., Economides M.J.: Hydraulic Fracture Mechanics. John Wiley & Sons, New York 1997.
- [17] Wojnarowski P.: Metody modelowania i oceny efektywności szczelinowania hydraulicznego skał złożowych w odwiertach naftowych. Wydawnictwa AGH, Kraków 2013.
- [18] Zhang F., Zhu H., Zhou H., Guo J., Huang B.: Discrete-Element-Method/Computational-Fluid-Dynamics Coupling Simulation of Proppant Embedment and Fracture Conductivity After Hydraulic Fracturing. IPTC-16444-MS, 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6cd2351-9c5e-4423-a8e7-bb6ca7f70924