PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies of flow and cavitation in hydraulic lift valve

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of experimental studies of the phenomena connected with the flow of the working medium in the throttling orifice of the conical head-bevelled or feather-edged seat unit. The critical Reynolds number demarcating the laminar flow from the turbulent flow for the particular conical head-bevelled or feather-edged seat units has been determined on the basis of visualization studies. The dependence between flow ratio Cv and the Reynolds number has been determined for the dilation angle of the conical valve heads and the length of the seat generating line. Acoustic and cavitation tests have shown that valve heads with the smallest dilation angle and the highest critical velocity are characterized by the lowest level of noise in the throttling orifice at which cavitation occurs.
Rocznik
Strony
951--961
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
  • Wrocław University of Technology, Faculty of Mechanical Engineering, 50-371 Wrocław, Poland
autor
  • Wrocław University of Technology, Faculty of Mechanical Engineering, 50-371 Wrocław, Poland
Bibliografia
  • [1] A. Ławniczak, Low-speed Hydraulic Drives (in Polish), Poznań University of Technology, Rozprawy No. 154, Poznań, 1988.
  • [2] European Parliament and Council Directive 2000/14/EC of 8 May 2000 Concerning the Harmonization of the Regulations Relating to Noise Emission in the Environment by Equipment for Use Outdoors (in Polish).
  • [3] W. Kollek, Z. Kudźma, J. Rutański, M. Stosiak, Acoustic problems relating to microhydraulic components and systems, Archive of Mechanical Engineering 57 (3) (2010) 293–308.
  • [4] M. Stosiak, The modelling of hydraulic distributor slide–sleeve interaction, Archives of Civil and Mechanical Engineering 12 (2) (2012) 192–197.
  • [5] M. Stosiak, Vibration insulation of hydraulic system control components, Archives of Civil and Mechanical Engineering 11 (1) (2011) 237–248.
  • [6] S. Bernad, R. Susan-Resiga, Numerical model for cavitation flow in hydraulic poppet valves, Modelling and Simulation in Engineering 2012 (2012) 1–10.
  • [7] S. Hayashi, Instability of poppet valve circuit, JSME International Journal 38 (3) (1995) 357–366.
  • [8] G. Licsko, A. Champneys, C. Hos, Dynamical analysis of a hydraulic pressure relief valve, Proceedings of the World Congress on Engineering (2009).
  • [9] S. Oshima, T. Ichikawa, Cavitation phenomena and performance of oil hydraulic poppet valve, Bulletin of JSME 28 (244) (1985) 2272–2279.
  • [10] W. Kasprzak, B. Lysik, Dimensional analysis, in: Algorithmic procedures for experiment handling (in Polish), WNT, Warsaw, 1988.
  • [11] R. Dindorf, J. Wołkow, Fluid microsystems, in: Similarity Conditions (in Polish), Proceedings of 19th Conference on the Testing, Manufacture and Operation of Hydraulic Systems ‘‘CYLINDER'99’’, 1999.
  • [12] Z. Kudźma, Free vibration frequency of the relief valve and the hydraulic system (in Polish), Sterowanie i Napęd Hydrauliczny 15 (3) (1990) 27–30.
  • [13] S. Stryczek, Hydrostatic Drive (in Polish), WNT, Warsaw, 1996.
  • [14] E. Urata, Thrust of poppet valve, Bulletin Japan Society of Mechanical Engineering 12 (53) (1969) 1099–1109.
  • [15] J. Bergada, J. Wattom, A direct solution for flow rate and force along a cone-seated poppet valve for laminar flow conditions, Proceedings of the Institution of Mechanical Engineers, Part 1: Journal of Systems and Control Engineering 218 (3) (2004) 197–210.
  • [16] Z. Kudźma, T. Mackiewicz, Conditions in which cavitation appears in hydraulic systems (in Polish), in: Proceedings of Scientific-Technical Conference on Hydraulic Drives and Controls, 1999.
  • [17] Collective work edited by W. Kollek, Fundamentals of the Design, Modelling and Operation of Microhydraulic Elements and Systems (in Polish), Wrocław University of Technology Publishing House, Wrocław, 2011.
  • [18] W. Kleinbrener, Werkstofferstörung durch Kavitation in ölhydraulischen Systemen, Industrie Anzeiger 61 (2) (1976) 22–28.
  • [19] Z. Kudźma, J. Mackiewicz, M. Stosiak, An acoustic probe in the diagnosis of displacement pump operation during the development of cavitation (in Polish), Przegląd Mechaniczny 63 (7/8) (2004) 17–22.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6c94662-3d18-4e6f-804e-eb14f59ea1b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.