PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural and surface characterization of adsorbents applied in liquid chromatography

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A detailed analysis of the four commercial stationary phases often applied in liquid chromatography was performed using the following: SEM-EDS techniques and specific surface area and porosity analysis methods (multipoint BET, BJH, DH and DFT). The SEM-EDS results confirmed that the main component of all adsorbents examined is silica (SiO₂), while differences in oxygen content indicate varied approaches to surface modification, ranging from the strongly hydrophilic phase of TSK Gel Amide-80 to the hydrophobic Nucleodur C18 Gravity. Besides, the presence of trace amounts of metals may influence the additional analyte-adsorbent interaction of different nature. A comparison of specific adsorbent surface area data obtained using the multipoint BET method with the manufacturers values revealed significant discrepancies in the cases of TSK Gel Amide 80 and Nucleodur C18 Gravity, which may be the result of differences in pore accessibility and measurement methods. However, the Eurospher II 100-5 HILIC and Purospher STAR NH₂ phases showed good agreement with the manufacturers data. The porous structure of the phase studied shows significant differences: TSK Gel Amide 80 is characterized by mesopores with a uniform distribution, which favor the retention of larger molecules; Eurospher II 100-5 HILIC is microporous and selective for small, polar analytes; Nucleodur C18 Gravity has a structure typical of reversed phase materials; and Purospher STAR NH₂ exhibits the highest porosity, which favors the retention of large molecules, although it can also lead to the retention of undesirable analytes.
Twórcy
  • Doctoral School of the Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszow University of Technology, ul. Kwiatkowskiego, 37-450 Stalowa Wola, Poland
  • Department of Chemical and Process Engineering, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
  • Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
  • Department of Chemical and Process Engineering, Faculty of Chemistry, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Ali A.H. High-Performance Liquid Chromatography (HPLC): A review. HSPI Ann Adv Chem. 2022; 6: 10–20, https://doi.org/10.29328/journal.aac.1001026.
  • 2. Fekete S., Kohler I., Rudaz S., Guillarme D. Importance of instrumentation for fast liquid chromatography in pharmaceutical analysis. J. Pharm. Biomed. Anal. 2014; 87: 105–119, http://dx.doi.org/10.1016/j.jpba.2013.03.012.
  • 3. Unger K.K., Liapis A.I. Adsorbents and columns in analytical high-performance liquid chromatography: A perspective with regard to development and understanding. J. Sep. Sci. 2012; 35(10–11): 1201–1212, https://doi.org/10.1002/jssc.201200042.
  • 4. Chavan R.V., Kengar M.D., Dhole A.R., Salunkhe V.R. A review on adsorbents in chromatography. IJSRST 2019; 6(3): 2395–6011, https://doi.org/10.32628/IJSRST19636.
  • 5. Zhao L., Qin H., Wu R., Zou H. Recent advances of mesoporous materials in sample preparation. J. Chromatogr. A 2012; 1228: 193–204, https://doi.org/10.1016/j.chroma.2011.09.051.
  • 6. Jaćkowska M., Bocian Sz., Gawdzik B., Grochowicz M., Buszewski B. Influence of chemical modification on the porous structure of polymeric adsorbents. Materials Chem. Phys. 2011; 130(1–2): 644–650, https://doi.org/10.1016/j.matchemphys.2011.07.039.
  • 7. Liu W., Zhang Y., Wang S., Bai L., Deng Y., Tao J. Effect of pore size distribution and amination on adsorption capacities of polymeric adsorbents. 2021; 26: 5267, https://doi.org/10.3390/molecules26175267.
  • 8. Godinho J.M., Naese J.A., Toler A.E., Boyes B.E., Henry R.A., DeStefano J.J., Grinias J.P. Importance of particle pore size in determining retention and selectivity in reversed phase liquid chromatography. J. Chromatogr. A 2020; 1634: 461678, https://doi.org/10.1016/j.chroma.2020.461678.
  • 9. Ongkudon C.M., Kansil T., Wong C. Challenges and strategies in the preparation of large-volume polymer-based monolithic chromatography adsorbents. J. Sep. Sci. 2014; 37(5): 455–464, https://doi.org/10.1002/jssc.201300995.
  • 10. Gritti F., Guiochon G. Mass transfer kinetics, band broadening and column efficiency. J. Chromatogr. A 2012; 1221: 2–40, https://doi.org/10.1016/j.chroma.2011.04.058.
  • 11. Gritti F., Guiochon G. New insights on mass transfer kinetics in chromatography. AIChE Journal. 2011; 57(2): 333–345, https://doi.org/10.1002/aic.12271.
  • 12. Gritti F., Guiochon G. The mass transfer kinetics in columns packed with Halo-ES shell particles. J. Chromatogr. A 2011; 1218(7): 907–921, https://doi.org/10.1016/j.chroma.2010.12.046.
  • 13. Gritti F., Guiochon G. Importance of sample intraparticle diffusivity in investigations of the mass transfer mechanism in liquid chromatography. AIChE Journal 2011; 57(2): 346–358, https://doi.org/10.1002/aic.12280.
  • 14. Broeckhoven K., Desmet G. Methods to determine the kinetic performance limit of contemporary chromatographic techniques. J. Sep. Sci. 2021; 44(1): 323–339, https://doi.org/10.1002/jssc.202000779.
  • 15. Gritti F., Guiochon G. Perspectives on the evolution of the column efficiency in liquid chromatography. Anal. Chem. 2013; 85(6): 3017–3025, https://doi.org/10.1021/ac3033307.
  • 16. Rastegar S.O., Gu T. Empirical correlations for axial dispersion coefficient and Peclet number in fixed-bed columns. J. Chromatogr. A 2017; 1490: 133–137, https://doi.org/10.1016/j.chroma.2017.02.026.
  • 17. Gritti F., McDonald T., Gilar M. Accurate measurement of dispersion data through short and narrow tubes used in very high-pressure liquid chromatography. J. Chromatogr. A 2015; 1410: 118–128, http://dx.doi.org/10.1016/j.chroma.2015.07.086.
  • 18. Antos D., Kaczmarski K., Piątkowski W. Preparative chromatography as a process of mixtures separation. WNT Warszawa 2011.
  • 19. Lee D.W., Yoo B.R. Advanced silica/polymer composites: Materials and applications. J. Ind. Eng. Chem. 2016; 38: 1–12, https://doi.org/10.1016/j.jiec.2016.04.016.
  • 20. Manyangadze M., Chikuruwo N.H.M., Chakra C.S., Narsaiah T.B., Radhakumari M., Danha G. Enhancing adsorption capacity of nano-adsorbents via surface modification: a review. S. Afr. J. Chem. Eng. 2020; 31(1): 25–32, https://doi.org/10.1016/j.sajce.2019.11.003.
  • 21. Cossio R., Albonico C., Zanella A., Fraterrigo-Garofalo S., Avataneo C., Compagnoni R., Turci F. Innovative unattended SEM-EDS analysis for asbestos fiber quantification. Talanta 2018; 190: 158–166, https://doi.org/10.1016/j.talanta.2018.07.083.
  • 22. Bardestani R., Patience G.S., Kaliaguine S. Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. J. Chem. Eng. 2019; 97(11): 2781–2791, https://doi.org/10.1002/cjce.23632.
  • 23. ShamsiJazeyi H., Verduzco R., Hirasaki G.J. Reducing adsorption of anionic surfactant for enhanced oil recovery: Part I. Physicochem. Eng. Aspects 2014; 453: 162–167, http://dx.doi.org/10.1016/j.colsurfa.2013.10.042.
  • 24. Moro D., Ulian G., Valdrè G. SEM-EDS nanoanalysis of mineral composite materials: A Monte Carlo approach. Compos. Struct. 2021; 259: 113227, https://doi.org/10.1016/j.compstruct.2020.113227.
  • 25. Moro D., Ulian G., Valdrè G. Monte Carlo strategy for SEM-EDS micro-nanoanalysis of geopolymer composites. Compos. Part C 2021; 6: 100183, https://doi.org/10.1016/j.jcomc.2021.100183.
  • 26. Shimizu S., Matubayasi N. Surface area estimation: replacing the Brunauer−Emmett−Teller model with the statistical thermodynamic fluctuation theory. Langmuir 2022; 38(26): 7989−8002, https://doi.org/10.1021/acs.langmuir.2c00753.
  • 27. Khan A.S.A. Theory of adsorption equilibria analysis based on general equilibrium constant expression. Turk. J. Chem. 2012; 36(2): 219–231, https://doi.org/10.3906/kim-1110-6.
  • 28. Galarneau A., Mehlhorn D., Guenneau F., Coasne B., Villemot F., Minoux D., Aquino C., Dath J.P. Specific surface area determination for microporous/mesoporous materials: the case of mesoporous FAU-Y zeolites. Langmuir 2018; 34(47): 14134−14142, https://doi.org/10.1021/acs.langmuir.8b02144.
  • 29. Ma X., Li J., Rankin M.A., Croll L.M., Dahn J.R. Highly porous MnOx prepared from Mn(C2O4)·3H2O as an adsorbent for the removal of SO2 and NH3. Microporous Mesoporous Mater. 2017; 244: 192–198, https://doi.org/10.1016/j.micromeso.2016.10.019.
  • 30. Hayati-Ashtiani M. Characterization of nanoporous bentonite (montmorillonite) particles using FTIR and BET-BJH analyses. Part. Part. Syst. Charact. 2011; 28(3–4): 71–76, https://doi.org/10.1002/ppsc.201100030.
  • 31. Haghighatju F., Rafsanjani H.H., Esmaeilzadeh F. Estimation of the dimension of micropores and mesopores in single walled carbon nanotubes using the method Horvath–Kawazoe, Saito and Foley and BJH equations. Micro & Nano Letters 2017; 12(1): 1–5, https://doi.org/10.1049/mnl.2016.0306.
  • 32. Tan Y.H., Davis J.A., Fujikawa K., Ganesh N.V., Demchenko A.V., Stine K.J. Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy. J. Mater. Chem. 2012; 22(14): 6733–6745, https://doi.org/10.1039/C2JM16633J.
  • 33. Landers J., Gor G.Y., Neimark A.V. Density functional theory methods for characterization of porous materials. Colloids Surf. A 2013; 437: 3–32, https://doi.org/10.1016/j.colsurfa.2013.01.007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6c91f80-b119-4e0d-96f8-c57dd07dce67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.