Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article illustrates modeling of flexible neural networks for handwritten signatures preprocessing. An input signature is interpolated to adjust inclination angle, than descriptor vector is composed. This information is preprocessed in proposed flexible neural network architecture, in which some neurons are becoming crucial for recognition and adapt to classification purposes. Experimental research results are compared in benchmark tests with classic approach to discuss efficiency of proposed solution.
Rocznik
Tom
Strony
197--202
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
- Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland
autor
- Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland
Bibliografia
- [1] L. Rutkowski, M. Jaworski, L. Pietruczuk, and P. Duda, “Decision trees for mining data streams based on the gaussian approximation,” Knowledge and Data Engineering, IEEE Transactions on, vol. 26, no. 1, pp. 108–119, 2014.
- [2] L. Rutkowski, M. Jaworski, L. Pietruczuk, and P. Duda, “A new method for data stream mining based on the misclassification error,” Neural Networks and Learning Systems, IEEE Transactions on, vol. 26, no. 5, pp. 1048–1059, 2015.
- [3] A. Venčkauskas, R. Damaševičius, R. Marcinkevičius, and A. Karpavičius, “Problems of authorship identification of the national language electronic discourse,” in Information and Software Technologies. Springer, 2015, pp. 415–432.
- [4] D. S. Carrell, D. Cronkite, R. E. Palmer, K. Saunders, D. E. Gross, E. T. Masters, T. R. Hylan, and M. Von Korff, “Using natural language processing to identify problem usage of prescription opioids,” International journal of medical informatics, vol. 84, no. 12, pp. 1057–1064, 2015.
- [5] F. Duvallet, M. R. Walter, T. Howard, S. Hemachandra, J. Oh, S. Teller, N. Roy, and A. Stentz, “Inferring maps and behaviors from natural language instructions,” in Experimental Robotics. Springer, 2016, pp. 373–388.
- [6] A. Horzyk, “How does generalization and creativity come into being in neural associative systems and how does it form human-like knowledge?” Neurocomputing, vol. 144, pp. 238–257, 2014.
- [7] J. A. Starzyk et al., “Memristor crossbar architecture for synchronous neural networks,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 61, no. 8, pp. 2390–2401, 2014.
- [8] V. A. Nguyen, J. A. Starzyk, W.-B. Goh, and D. Jachyra, “Neural network structure for spatio-temporal long-term memory,” Neural Networks and Learning Systems, IEEE Transactions on, vol. 23, no. 6, pp. 971–983, 2012.
- [9] A. Horzyk, “Innovative types and abilities of neural networks based on associative mechanisms and a new associative model of neurons,” in Artificial Intelligence and Soft Computing. Springer, 2015, pp. 26–38.
- [10] A. Munoz-Briseno, A. Gago-Alonso, and J. Hernandez-Palancar, “Fingerprint indexing with bad quality areas,” Expert Systems with Applications, vol. 40, no. 5, pp. 1839–1846, 2013.
- [11] H. Kasban, “Fingerprints verification based on their spectrum,” Neurocomputing, vol. 171, pp. 910–920, 2016.
- [12] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, “Writer-independent feature learning for offline signature verification using deep convolutional neural networks,” arXiv preprint arXiv:1604.00974, 2016.
- [13] K. Cpałka and M. Zalasiński, “On-line signature verification using vertical signature partitioning,” Expert Systems with Applications, vol. 41, no. 9, pp. 4170–4180, 2014.
- [14] F. L. Malallah, S. M. S. Ahmad, W. A. W. Adnan, O. A. Arigbabu, V. Iranmanesh, and S. Yussof, “Online handwritten signature recognition by length normalization using up-sampling and down-sampling,” International Journal of Cyber-Security and Digital Forensics (IJCSDF), vol. 4, no. 1, pp. 302–313, 2015.
- [15] X. Chen, “Extraction and analysis of the width, gray scale and radian in chinese signature handwriting,” Forensic science international, vol. 255, pp. 123–132, 2015.
- [16] S.-J. Park, S.-J. Hwang, J.-P. Na, and J.-H. Baek, “On-line signature recognition using statistical feature based artificial neural network,” Journal of the Korea Institute of Information and Communication Engineering, vol. 19, no. 1, pp. 106–112, 2015.
- [17] S. Sthapak, M. Khopade, and C. Kashid, “Artificial neural network based signature recognition & verification,” International Journal of Emerging Technology and Advanced Engineering (IJETAE), vol. 2, no. 8, pp. 191–197, 2013.
- [18] S. Y. Ooi, A. B. J. Teoh, Y. H. Pang, and B. Y. Hiew, “Image-based handwritten signature verification using hybrid methods of discrete radon transform, principal component analysis and probabilistic neural network,” Applied Soft Computing, vol. 40, pp. 274–282, 2016.
- [19] J. Galbally, M. Diaz-Cabrera, M. A. Ferrer, M. Gomez-Barrero, A. Morales, and J. Fierrez, “On-line signature recognition through the combination of real dynamic data and synthetically generated static data,” Pattern Recognition, vol. 48, no. 9, pp. 2921–2934, 2015.
- [20] M. Woźniak, D. Połap, G. Borowik, and C. Napoli, “A first attempt to cloud-based user verification in distributed system,” in Computer Aided System Engineering (APCASE), 2015 Asia-Pacific Conference on. IEEE, 2015, pp. 226–231.
- [21] J. A. Starzyk, J. T. Graham, P. Raif, and A.-H. Tan, “Motivated learning for the development of autonomous systems,” Cognitive Systems Research, vol. 14, no. 1, pp. 10–25, 2012.
- [22] J. Graham, J. A. Starzyk, and D. Jachyra, “Opportunistic behavior in motivated learning agents,” Neural Networks and Learning Systems, IEEE Transactions on, vol. 26, no. 8, pp. 1735–1746, 2015.
- [23] K. Waledzik and J. Mandziuk, “An automatically generated evaluation function in general game playing,” Computational Intelligence and AI in Games, IEEE Transactions on, vol. 6, no. 3, pp. 258–270, 2014.
- [24] M. Swiechowski and J. Mandziuk, “Self-adaptation of playing strategies in general game playing,” Computational Intelligence and AI in Games, IEEE Transactions on, vol. 6, no. 4, pp. 367–381, 2014.
- [25] K. Cpałka, M. Zalasiński, and L. Rutkowski, “A new algorithm for identity verification based on the analysis of a handwritten dynamic signature,” Applied Soft Computing, vol. 43, pp. 47–56, 2016.
- [26] G. Pirlo, V. Cuccovillo, M. Diaz-Cabrera, D. Impedovo, and P. Mignone, “Multidomain verification of dynamic signatures using local stability analysis,” Human-Machine Systems, IEEE Transactions on, vol. 45, no. 6, pp. 805–810, 2015.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6bea67c-ee3f-4ed4-ba7c-590a94acc471
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.