Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Machine learning applications to high-throughput data in medicine – one ofthe biggest resources for understanding complex diseases – have been limitedthus far. Here, we present a computational approach for assessing the intrinsicvariability in the most prominent data type, transcriptomics data for diseasecohorts. Our study looks at situations where multiple data sets for the samedisease are available. We leverage concepts of network medicine to assess howthe match between a biological network and a set of differentially expressedgenes varies across different networks and experiments. Our results showedthat different biological networks yielded markedly different results; also, theclustering of diseases depended strongly on the choice of the parameters thatwere contained in the data analysis and network processing.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
69--91
Opis fizyczny
Bibliogr. 70 poz., rys., tab., wykr.
Twórcy
autor
- Constructor University, School of Science, Campus Ring 1 28759 Bremen, Germany
autor
- Constructor University, School of Science, Campus Ring 1 28759 Bremen, Germany
Bibliografia
- [1] Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O.,et al.: Accurate structure prediction of biomolecular interactions with Alpha Fold 3, Nature, pp. 1–3, 2024. doi: 10.1038/s41586-024-07487-w.
- [2] Alon U.: Network motifs: theory and experimental approaches, Nature Reviews Genetics, vol. 8(6), pp. 450–461, 2007. doi: 10.1038/nrg2102.
- [3] Alon U.: Systems medicine: physiological circuits and the dynamics of disease, CRC Press, 2023. doi: 10.1201/9781003356929.
- [4] Barabási A.L.: Network medicine—from obesity to the “diseasome”, 2007.
- [5] Barabási A.L.: Network Science, Cambridge University Press, 2016.
- [6] Barabási A.L., Gulbahce N., Loscalzo J.: Network medicine: a network-based approach to human disease, Nature Reviews Genetics, vol. 12(1), pp. 56–68, 2011.
- [7] Barabasi A.L., Oltvai Z.N.: Network biology: understanding the cell’s function alorganization, Nature Reviews Genetics, vol. 5(2), 101, 2004. doi: 10.1038/nrg1272.
- [8] Best M.G., Sol N., Kooi I., Tannous J., Westerman B.A., Rustenburg F., Schellen P., et al.: RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics, Cancer Cell, vol. 28(5), pp. 666–676, 2015. doi: 10.1016/j.ccell.2015.09.018.
- [9] Brunk E., Sahoo S., Zielinski D.C., Altunkaya A., Dräger A., Mih N., Gatto F., et al.: Recon 3D enables a three-dimensional view of gene variation in human metabolism, Nature Biotechnology, vol. 36(3), pp. 272–281, 2018. doi: 10.1038/nbt.4072.
- [10] Cakir E., Lesne A., Hütt M.T.: The economy of chromosomal distances in bacterial gene regulation, npj Systems Biology and Applications, vol. 7(1), p. 49, 2021. doi: 10.1038/s41540-021-00209-2.
- [11] Cannarozzi A.L., Latiano A., Massimino L., Bossa F., Giuliani F., Riva M., Ungaro F., et al.: Inflammatory bowel disease genomics, transcriptomics, proteomics and metagenomics meet artificial intelligence, United European Gastroenterology Journal, 2024. doi: 10.1002/ueg2.12655.
- [12] Casamassimi A., Federico A., Rienzo M., Esposito S., Ciccodicola A.: Transcriptome profiling in human diseases: new advances and perspectives, International Journal of Molecular Sciences, vol. 18(8), p. 1652, 2017. doi: 10.3390/ijms18081652.
- [13] Chen K.A., Nishiyama N.C., Kennedy Ng M.M., Shumway A., Joisa C.U., Schaner M.R., Lian G., et al.: Linking gene expression to clinical outcomes inpediatric Crohn’s disease using machine learning, Scientific Reports, vol. 14(1), 2667, 2024. doi: 10.1038/s41598-024-52678-0.
- [14] Costa V., Esposito R., Ziviello C., Sepe R., Bim L.V., Cacciola N.A., Decaussin-Petrucci M., et al.: New somatic mutations and WNK1-B4GALNT3 gene fusionin papillary thyroid carcinoma, Oncotarget, vol. 6(13), pp. 11242–11251, 2015. doi: 10.18632/oncotarget.3593.
- [15] Cunningham F., Allen J.E., Allen J., Alvarez-Jarreta J., Amode M.R., Armean I.M., Austine-Orimoloye O., et al.: Ensembl 2022, Nucleic Acids Research, vol. 50(D1), pp. D988–D995, 2022. doi: 10.1093/NAR/GKAB1049.
- [16] Desai N., Neyaz A., Szabolcs A., Shih A.R., Chen J.H., Thapar V., Nieman L.T., et al.: Temporal and spatial heterogeneity of host response to SARS-CoV-2 pulmonary infection, Nature Communications, vol. 11(1), p. 6319, 2020.doi: 10.1038/s41467-020-20139-7.
- [17] Eswaran J., Cyanam D., Mudvari P., Reddy S.D.N., Pakala S.B., Nair S.S., Florea L., et al.: Transcriptomic landscape of breast cancers through mRNA sequencing, Scientific Reports, vol. 2(1), p. 264, 2012. doi: 10.1038/srep00264.
- [18] Fröhlich H., Balling R., Beerenwinkel N., Kohlbacher O., Kumar S., Lengauer T., Maathuis M.H., et al.: From hype to reality: data science enabling personalized medicine, BMC Medicine, vol. 16, pp. 1–15, 2018. doi: 10.1186/s12916-018-1122-7.
- [19] Gosak M., Markovič R., Dolenšek J., Rupnik M.S., Marhl M., Stožer A., Perc M.: Network science of biological systems at different scales: A review, Physics of LifeReviews, vol. 24, pp. 118–135, 2018. doi: 10.1016/j.plrev.2017.11.003.
- [20] Haberman Y., Schirmer M., Dexheimer P.J., Karns R., Braun T., Kim M.O., Walters T.D., et al.: Age-of-diagnosis dependent ileal immune intensification and reduced alphadefensin in older versus younger pediatric Crohn Disease patients despite already established dysbiosis, Mucosal Immunology, vol. 12(2), pp. 491–502, 2019. doi: 10.1038/s41385-018-0114-4.
- [21] Haberman Y., Tickle T.L., Dexheimer P.J., Kim M.O., Tang D., Karns R., Bal-dassano R.N., et al.: Erratum: Pediatric Crohn disease patients exhibit specificileal transcriptome and microbiome signature (Journal of Clinical Investigation (2014) 124: 8 (3617-3633) DOI: 10.1172/JCI75436), Journal of Clinical Investigation, vol. 125(3), p. 1363, 2015. doi: 10.1172/JCI79657.
- [22] Howell K.J., Kraiczy J., Nayak K.M., Gasparetto M., Ross A., Lee C., Mak T.N., et al.: DNA Methylation and Transcription Patterns in Intestinal Epithelial CellsFrom Pediatric Patients With Inflammatory Bowel Diseases Differentiate Disease Subtypes and Associate With Outcome, Gastroenterology, vol. 154(3), pp. 585–598, 2018. doi: 10.1053/j.gastro.2017.10.007.
- [23] Hütt M.T.: Understanding genetic variation – the value of systems biology, British Journal of Clinical Pharmacology, vol. 77(4), pp. 597–605, 2014.doi: 10.1111/bcp.12266.
- [24] Ideker T., Krogan N.J.: Differential network biology, Molecular Systems Biology, vol. 8(1), p. 565, 2012. doi: 10.1038/msb.2011.99.
- [25] Ilott N.E., Neyazi M., Arancibia-Cárcamo C.V., Powrie F., Geremia A., Investigators O.T.G.U., et al.: Tissue-dependent transcriptional and bacterial associations in primary sclerosing cholangitis-associated inflammatory bowel disease, Wellcome Open Research, vol. 6, 2021. doi: 10.12688/wellcomeopenres.16901.1.
- [26] Jablonski K.P., Carron L., Mozziconacci J., Forné T., Hütt M.T., Lesne A.: Contribution of 3D genome topological domains to genetic risk of cancers: a genome-wide computational study, Human Genomics, vol. 16(1), 2, 2022.doi: 10.1186/s40246-022-00375-2.
- [27] Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., et al.: Highly accurate protein structure prediction with AlphaFold, Nature, vol. 596(7873), pp. 583–589, 2021. doi: 10.1038/s41586-021-03819-2.
- [28] Ker J., Wang L., Rao J., Lim T.: Deep learning applications in medical image analysis, IEEE Access, vol. 6, pp. 9375–9389, 2017. doi: 10.1109/access.2017.2788044.
- [29] Kharchenko P., Church G.M., Vitkup D.: Expression dynamics of a cellular metabolic network, Molecular Systems Biology, vol. 1(1), 2005.0016, 2005.doi: 10.1038/msb4100023.
- [30] Knecht C., Fretter C., Rosenstiel P., Krawczak M., Hütt M.T.: Distinct metabolic network states manifest in the gene expression profiles of pediatric inflammatory bowel disease patients and controls, Scientific Reports, vol. 6(32584), 2016.doi: 10.1038/srep32584.
- [31] Kosmidis K., Jablonski K.P., Muskhelishvili G., Hütt M.T.: Chromosomal originof replication coordinates logically distinct types of bacterial genetic regulation, npj Systems Biology and Applications, vol. 6(1), pp. 1–9, 2020. doi: 10.1038/s41540-020-0124-1.
- [32] Krijger P.H.L., De Laat W.: Regulation of disease-associated gene expression in the 3D genome, Nature Reviews Molecular Cell Biology, vol. 17(12), pp. 771–782,2016. doi: 10.1038/nrm.2016.138.
- [33] Ktena I., Wiles O., Albuquerque I., Rebuffi S.A., Tanno R., Roy A.G., Azizi S., et al.: Generative models improve fairness of medical classifiers under distributions hifts, Nature Medicine, pp. 1–8, 2024. doi: 10.1038/s41591-024-02838-6.
- [34] Loscalzo J., Barabasi A.L.: Systems biology and the future of medicine, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol. 3(6), pp. 619–627,2011. doi: 10.1002/wsbm.144.
- [35] Love M., Anders S., Huber W.: Differential analysis of count data – the DESeq2 package, Genome Biology, vol. 15, 550, 2014. doi: 10.1186/s13059-014-0550-8.
- [36] Love M.I., Huber W., Anders S.: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biology, vol. 15, pp. 1–21, 2014.doi: 10.1186/s13059-014-0550-8.
- [37] Ma H., Zeng A.P.: Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms, Bioinformatics, vol. 19(2), pp. 270–277, 2003. doi: 10.1093/bioinformatics/19.2.270.
- [38] Ma H.W., Zeng A.P.: The connectivity structure, giant strong component and centrality of metabolic networks, Bioinformatics, vol. 19(11), pp. 1423–1430,2003. doi: 10.1093/bioinformatics/btg177.
- [39] Marigorta U.M., Denson L.A., Hyams J.S., Mondal K., Prince J., Walters T.D.,Griffiths A., et al.: Transcriptional risk scores link GWAS to eQTLs and predict complications in Crohn’s disease, Nature Genetics, vol. 49(10), pp. 1517–1521, 2017. doi: 10.1038/ng.3936.
- [40] Marr C., Geertz M., Hütt M.T., Muskhelishvili G.: Dissecting the logical typesof network control in gene expression profiles, BMC Systems Biology, vol. 2(1), pp. 1–9, 2008. doi: 10.1186/1752-0509-2-18.
- [41] Meyer S., Reverchon S., Nasser W., Muskhelishvili G.: Chromosomal organization of transcription: in a nutshell, Current Genetics, vol. 64, pp. 555–565, 2018.
- [42] Mo A., Marigorta U.M., Arafat D., Chan L.H.K., Ponder L., Jang S.R., Prince J., et al.: Disease-specific regulation of gene expression in a comparative analysis of juvenile idiopathic arthritis and inflammatory bowel disease, Genome Medicine, vol. 10, 48, 2018. doi: 10.1186/s13073-018-0558-x.
- [43] Moncrieffe H., Bennett M.F., Tsoras M., Luyrink L.K., Johnson A.L., Xu H.,Dare J., et al.: Transcriptional profiles of JIA patient blood with subsequent poor response to methotrexate, Rheumatology (United Kingdom), vol. 56(9), pp. 1542–1551, 2017. doi: 10.1093/rheumatology/kex206.
- [44] Nyczka P., Hütt M.T.: Generative network model of transcriptome patterns indisease cohorts with tunable signal strength, Physical Review Research, vol. 2(3), 033130, 2020. doi: 10.1103/physrevresearch.2.033130.
- [45] Nyczka P., Hütt M.T., Lesne A.: Inferring pattern generators on networks, Physica A, vol. 566, 125631, 2021. doi: 10.1016/j.physa.2020.125631.
- [46] Oughtred R., Rust J., Chang C., Breitkreutz B.J., Stark C., Willems A., Boucher L., et al.: The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions, Protein Science,vol. 30(1), pp. 187–200, 2021. doi: 10.1002/PRO.3978.
- [47] Palsson B.Ø.:Systems biology: properties of reconstructed networks, Cambridge university press, 2006. doi: 10.1017/cbo9780511790515.
- [48] Papatheodorou I., Fonseca N.A., Keays M., Tang Y.A., Barrera E., Bazant W., Burke M., et al.: Expression Atlas: gene and protein expression across multiple studies and organisms, Nucleic Acids Research, vol. 46(D1), pp. D246–D251,2018.
- [49] Peck B.C., Weiser M., Lee S.E., Gipson G.R., Iyer V.B., Sartor R.B., Her-farth H.H.,et al.: MicroRNAs classify different disease behavior phenotypes ofCrohn’s disease and may have prognostic utility,Inflammatory Bowel Diseases,vol. 21(9), pp. 2178–2187, 2015. doi: 10.1097/MIB.0000000000000478.
- [50] Peeters J.G., Vervoort S.J., Tan S.C., Mijnheer G., de Roock S., Vastert S.J., Nieuwenhuis E.E.,et al.: Inhibition of Super-Enhancer Activity in Auto inflammatory Site-Derived T Cells Reduces Disease-Associated Gene Expression, CellReports, vol. 12(12), pp. 1986–1996, 2015. doi: 10.1016/j.celrep.2015.08.046.
- [51] Peters L.A., Perrigoue J., Mortha A., Iuga A., Song W.M., Neiman E.M., Llewellyn S.R., et al.: A functional genomics predictive network model identifies regulators of inflammatory bowel disease, Nature Genetics, vol. 49(10), pp. 1437–1449, 2017. doi: 10.1038/ng.3947.
- [52] Prudencio M., Belzil V.V., Batra R., Ross C.A., Gendron T.F., Pregent L.J., Murray M.E., et al.: Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS, Nature Neuroscience, vol. 18(8), pp. 1175–1182, 2015. doi: 10.1038/nn.4065.
- [53] Qiao L., Khalilimeybodi A., Linden-Santangeli N.J., Rangamani P.: The evolution of systems biology and systems medicine: From mechanistic models to uncertainty quantification, arXiv preprint arXiv:240805395, 2024. doi: 10.1146/annurev-bioeng-102723-065309.
- [54] Quraishi M.N., Acharjee A., Beggs A.D., Horniblow R., Tselepis C., Gkoutos G., Ghosh S., et al.: A Pilot Integrative Analysis of Colonic Gene Expression, Gut Microbiota, and Immune Infiltration in Primary Sclerosing Cholangitis-Inflammatory Bowel Disease: Association of Disease With Bile Acid Pathways, Journal of Crohn’s and Colitis, vol. 14(7), pp. 935–947, 2020. doi: 10.1093/ecco-jcc/jjaa021.
- [55] Rajpurkar P., Lungren M.P.: The current and future state of AI interpretation of medical images, New England Journal of Medicine, vol. 388(21), pp. 1981–1990, 2023. doi: 10.1056/nejmra2301725.
- [56] Ricarte-Filho J.C., Li S., Garcia-Rendueles M.E., Montero-Conde C., Voza F., Knauf J.A., Heguy A., et al.: Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers, Journal of Clinical Investigation, vol. 123(11), pp. 4935–4944, 2013. doi: 10.1172/JCI69766.
- [57] Sabari B.R., Dall’Agnese A., Young R.A.: Biomolecular condensates in the nucleus, Trends in Biochemical Sciences, vol. 45(11), pp. 961–977, 2020.doi: 10.1016/j.tibs.2020.06.007.
- [58] Sareen D., O’Rourke J.G., Meera P., Muhammad A.K.M.G., Grant S., Simpkinson M., Bell S., et al.: Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion, Science Translational Medicine, vol. 5(208), pp. 208ra149–208ra149, 2013. doi: 10.1126/scitranslmed.3007529.
- [59] Sarkans U., Gostev M., Athar A., Behrangi E., Melnichuk O., Ali A., Minguet J., et al.: The BioStudies database-one stop shop for all data supporting a life sciences study, Nucleic Acids Research, vol. 46(D1), pp. D1266–D1270, 2018.
- [60] Sastry A.V., Gao Y., Szubin R., Hefner Y., Xu S., Kim D., Choudhary K.S., et al.:The Escherichia coli transcriptome mostly consists of independently regulated modules, Nature Communications, vol. 10(1), 5536, 2019.
- [61] Schlicht K., Nyczka P., Caliebe A., Freitag-Wolf S., Claringbould A., Franke L., Võsa U., et al.: The metabolic network coherence of human transcriptomes isassociated with genetic variation at the cadherin 18 locus, Human Genetics, vol. 138(4), pp. 375–388, 2019. doi: 10.1007/s00439-019-01994-x.
- [62] Sharma A., Lysenko A., Jia S., Boroevich K.A., Tsunoda T.: Advances in AI and machine learning for predictive medicine, Journal of Human Genetics, pp. 1–11, 2024. doi: 10.1038/s10038-024-01231-y.
- [63] Shin Y., Chang Y.C., Lee D.S., Berry J., Sanders D.W., Ronceray P., Wingreen N.S., et al.: Liquid nuclear condensates mechanically sense and restructure the genome, Cell, vol. 175(6), pp. 1481–1491, 2018. doi: 10.1016/j.cell.2019.02.025.
- [64] Sonnenschein N., Geertz M., Muskhelishvili G., Hütt M.T.: Analog regulation of metabolic demand, BMC Systems Biology, vol. 5(1), 40, 2011. doi: 10.1186/1752-0509-5-40.
- [65] Sonnenschein N., Golib Dzib J.F., Lesne A., Eilebrecht S., Boulkroun S., Zennaro M.C., Benecke A., et al.: A network perspective on metabolic in consistency, BMC Systems Biology, vol. 6, pp. 1–13, 2012. doi: 10.1186/1752-0509-6-41.
- [66] Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., et al.: The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploadedgene/measurement sets, Nucleic Acids Research, vol. 49(D1), pp. D605–D612,2021. doi: 10.1093/NAR/GKAA1074.
- [67] Travers A., Muskhelishvili G.: DNA supercoiling – a global transcriptional regulator for enterobacterial growth? Nature Reviews Microbiology, vol. 3(2), pp. 157–169, 2005. doi: 10.1038/nrmicro1088.
- [68] Travers A., Muskhelishvili G., Thompson J.: DNA information: from digital code to analogue structure, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 370(1969), pp. 2960–2986, 2012. doi: 10.1098/rsta.2011.0231.
- [69] VanDussen K.L., Stojmirović A., Li K., Liu T.C., Kimes P.K., Muegge B.D., Simpson K.F., et al.: Abnormal Small Intestinal Epithelial Microvilli in Patients With Crohn’s Disease, Gastroenterology, vol. 155(3), pp. 815–828, 2018.doi: 10.1053/j.gastro.2018.05.028.
- [70] Wu M., Chen Y., Xia H., Wang C., Tan C.Y., Cai X., Liu Y., et al.: Transcriptional and proteomic insights into the host response in fatal COVID-19cases, Proceedings of the National Academy of Sciences of the United States of America, vol. 117(45), pp. 28336–28343, 2020. doi: 10.1073/PNAS.2018030117/SUPPL_FILE/PNAS.2018030117.SD01.XLSX.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6b8df6e-48f7-424a-83ce-41f2818d2fcb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.