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Abstract: A vast majority of research has been performed in
the field of hesitant fuzzy sets (HFSs), involving the introduction of
some properties, operations, relations and modifications of such sets
or considering the application of HFSs in MCDM (multicriteria de-
cision making). On the other hand, no research has been performed
in the field of fully hesitant fuzzy equations. Therefore, in this pa-
per, fully hesitant fuzzy equations and dual hesitant fuzzy equations
are introduced. First, a method is proposed to solve one-element
hesitant fuzzy equations. Then, the proposed method is extended
to solve n-element hesitant fuzzy equations effectively. Moreover, to
show the applicability of the proposed method, it is used to solve
a real world problem. Thus, the proposed method is applied to
determine market equilibrium price. Also, some other numerical ex-
amples are presented to better show the performance of the proposed
method.

Keywords: hesitant fuzzy sets, hesitant fuzzy equations, dual
hesitant fuzzy equations, membership degree

1. Introduction

Linear equations are commonly applied in various fields of science, such as en-
gineering, physics, computer science, technology, business, and economics. Yet,
in reality, many systems involve data that are not deterministic. Therefore,
the parameters of such systems are often non-deterministic and the uncertainty
must be considered in modeling these systems. One approach to uncertainty
quantification is to consider a fuzzy set as an encoding of uncertainty (see,
for instance, Khalili Goodarzi, Taghinezhad and Nasseri, 2014; Nasseri et al.,
2014; Taghi-Nezhad, 2019; Taleshian, Fathali and Taghi-Nezhad, 2018; Babako-
rdi, Allahviranloo and Adabitabarfirozja, 2016; or Allahviranloo and Babakordi,
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2017). Fuzzy set theory is considered in different areas, and many new results
are being continuously obtained, such as those reported, for instance, in Vi-
attchenin, Owsiński and Kacprzyk (2018), Begnini et al. (2018), Kalshetti and
Dixit (2018), or Hesamian (2017).

The initial investigations of interest here focused on solving fuzzy linear
equations (see, e.g., Buckley, 1991). Subsequent studies dealt with various tech-
niques for solving fuzzy equations and systems of fuzzy equations. Thus, for
instance, the Newton method and some extensions, such as the steepest descent
method, and then evolutionary algorithms, neural nets and other iterative meth-
ods can be used for this purpose (see, in particular, Abbasbandy and Asady,
2004; Buckley, Feuring and Hayashi, 2002; Amirfakharian, 2012; Noor’ani et al.,
2011; Farahani, Nehi and Paripour, 2016; or Babakordi and Firozja, 2020). The
most recent research in this area concerns the ranking method for solving dual
fuzzy polynomial equations. In the method mentioned, fuzzy sets require the
specification of membership degree for each element in the reference set; whereas
the hesitant fuzzy sets (HFS) permit the designer to include some hesitation on
this value, see Torra (2010) and Torra and Narukawa (2009), who introduced
the concept of HFS. The HFSs allow the membership degree to acquire some
different possible crisp values between zero and one.

Recently, HFSs have gained the attention of researchers, prompting them
to apply HFSs, in particular, to multi-criteria decision-making (MCDM) prob-
lems. For instance, a number of studies on the aggregation operators of HFSs
and their extensions were conducted in Zhu, Xu and Xia (2011), Xia, Xu and
Chen (2013), Zhang et al. (2014), Zhou (2014), Tang et al. (2018), as well as
Farhadinia and Herrera-Viedma (2018). The correlation coefficient, distance,
and correlation measurement of HFSs were developed in Yu, Wu and Zhou
(2011) and in Farhadinia (2014a, b). Wang et al. (2014) proposed an outrank-
ing approach with the use of HFSs to solve the MCDM problems. Peng et al.
(2017) introduced an MCDM approach with hesitant interval-valued intuition-
istic fuzzy sets (HIVIFSs), which are an extension of the dual HFSs. Chen,
Xu and Xia (2013) generalized the concept of HFS to interval-valued hesitant
fuzzy set (IVHFS) and proposed some aggregation operators. At more or less
the same time, Wei and Zhao (2013) defined the hesitant interval-valued fuzzy
sets (HIVFSs) and developed Einstein operations on them. Further, Wei and
Zhao (2013) defined also a series of hesitant interval-valued fuzzy aggregation
operators for the MCDM problems, based on algebraic operations. However,
regardless whether IVHFSs or HIVFSs are involved, the membership degrees
of an element in a given set are represented by several possible interval values.
IVHFSs and HIVFSs are both extensions of HFSs and IVFSs, and they are es-
sentially of the same nature. Both concepts are generalized forms of HFSs and
can be reduced to the latter when the upper and the lower limits of the possible
interval values are the same. This, naturally, means that HFSs are a special
case of IVHFSs or HIVFSs. Several related studies were also conducted based
on IVHFSs or HIVFSs. Thus, for example, Zhu et al. (2014) developed some
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Einstein aggregation operators with hesitant interval-valued fuzzy information
and applied them to MCDM problems (compare Wei and Zhao, 2013).

In 2017, based on a two-stage optimization and multiplicative consistency,
the priority vector and consistency of hesitant fuzzy linguistic (HFL) preference
relation were discussed by Peng et. al. (2017).

Then, a method was proposed by Liu and Zhang (2020) that converts the
original decision matrix, expressed by the hesitant fuzzy linguistic term sets
(HFLTSs) into the evidence matrix with HFLTSs. The same authors also de-
veloped a weight-determining model for MADM problems with HFL information
(Liu and Zhang, 2020). A new group decision making (GDM) method with hes-
itant fuzzy linguistic preference relations (HFLPRs) was proposed by Zhang
and Chen (2020). First, a consensus checking method was proposed to mea-
sure the consensus level of individual HFLPRs. Then, a definition of acceptable
consensus was introduced. The generalized interval probability hesitant fuzzy
linguistic IOWA weighted average (GVIOWAWA) operator was proposed by
Xian and Guo (2020) to aggregate the uncertain linguistic information with in-
complete reliability. The GVIOWAWA operator enables the decision makers to
select the appropriate parameters according to their needs. Then, the interval
probability hesitant fuzzy linguistic TOPSIS (IPHFL-TOPSIS) based on the
interval probability hesitant fuzzy linguistic Euclidean distance was established
by Xian and Guo (2020). The IPHFL-TOPSIS model is shown in Xian and Guo
(2020) to effectively and objectively help businesses find the strategic coopera-
tion supplier. The focus of Boyaci (2020) is on the selection of eco-friendly cities
in Turkey, according to the criteria such as average PM10 measurement values
at the air quality measurement stations, forest area per km2, and percentage of
population receiving waste services, using the hesitant fuzzy linguistic term set
(HFLTS)-based additive ratio assessment (ARAS) method.

Although a vast majority of the investigations mentioned have been per-
formed in the field of HFSs, these studies only introduce some properties, opera-
tions, relations and modifications of HFSs or consider their application uniquely
in MCDM. In the literature, only Ranjbar and Effati (2019) extended signifi-
cantly the domain of application of HFSs and used them in a linear programming
problem. Since no significant research has been performed in the field of hesi-
tant fuzzy equations, in this paper, hesitant fuzzy equations in the form of half
hesitant fuzzy equation, partial fuzzy equation, fully hesitant fuzzy equation
and hesitant dual fuzzy equations are investigated.

The present paper is structured as follows: in Section 2, the preliminaries
are presented. In Section 3, hesitant fuzzy equations are introduced. In Section
4, a method is proposed to solve one-element hesitant fuzzy equations. The
proposed method is extended to n-element hesitant fuzzy equations in Section
5. Then, in Section 6, an economic application of dual hesitant fuzzy equations
is presented. Namely, the market equilibrium price that can be modeled using a
hesitant fuzzy equation, is determined. Some numerical examples are presented
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in Section 7 that verify the effectiveness of the proposed method. Finally, the
conclusions are presented in Section 8.

2. The preliminaries

In this section, the required notations, basic concepts and some necessary def-
initions are reviewed. The concept of the HFSs is used extensively throughout
this paper, therefore; first, some basic definitions of HFSs are presented in the
following.

Definition 1 (Torra, 2010) Let X be a fixed set. An HFS on X is expressed
in terms of a function that, when applied to X, returns a subset of [0,1], con-
taining a finite number of elements. For better understanding, Xia, Xu and
Chen (2013) expressed HFS in terms of the following symbolic notation:

A = {< x, hA(x) > |x ∈ X } (1)

where hA(x) is some set of values from [0 , 1], corresponding to the possible
membership degrees of the element x ∈ X regarding the setA. For convenience,
we shall refer to hA(x) as to a hesitant fuzzy element (HFE). Some of the
operations on the HFEs, which are defined in Torra (2010) and Xia, Xu and
Chen (2013), are as follows:

hc = ∪γ∈h { 1− γ } ,

hλ = ∪γ∈h

{

γλ
}

,

hλ= ∪γ∈h 1− (1− γ)λ (2)

h1 ∪ h2 = ∪γ1∈h1,γ2∈h2
max {γ1, γ2}

h1 ∩ h2 = ∩γ1∈h1,γ2∈h2
min {γ1, γ2}

h1 + h2 = ∪γ1∈h1,γ2∈h2
{γ1 + γ2 − γ1γ2}h1 × h2 = ∪γ1∈h1,γ2∈h2

{γ1γ2} .

3. Hesitant fuzzy equations

In this section, two different types of hesitant fuzzy equations are defined.

Definition 2 The equation AX = B is called fully hesitant fuzzy equation,
when A and B are known hesitant fuzzy sets and X is an unknown hesitant
fuzzy set. AX + B = CX + D is called dual hesitant fuzzy equation, when A,
B, C and D are known hesitant fuzzy sets and X is an unknown hesitant fuzzy
set.

In the following, fully hesitant fuzzy equations and dual hesitant fuzzy equa-
tions are solved for the cases, in which all the involved hesitant fuzzy sets have
equal number of elements. First, the method is defined for one-element hesitant
fuzzy sets, and then it is extended to n-element hesitant fuzzy sets.
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4. The proposed method for solving one-element hesitant

fuzzy equation

4.1. The definitions pertaining to the solutions

Let us start with the four already known solution types, proposed by the re-
searchers active in interval analysis (Fiedler et al., 2006; Lodwick, 1990; Stolfi
and de Figueriredo, 1997) for fully and dual hesitant fuzzy equation. Then, the
method for solving each type of hesitant fuzzy equation is described.

Definition 3 Consider hesitant fuzzy element hx. It is said that hx ∈ [ab]
when for each h ∈ hx there is a ≤ h ≤ b.

Definition 4 (United solution set (USS)) The united solution set of the
fully hesitant fuzzy equation {< a, ha >} {< x, hx >} = {< b, hb >} is denoted
by X∃∃, and is defined as follows:

X∃∃ =
{

x
′

∈ hx ∈ [0, 1] : (∃h ∈ ha)
(

∃h
′

∈ hb

)

s.t. h x
′

= h
′

}

= {hx ∈ [0, 1] : (ha × hx) ∩ hb} 6= ∅} .

Definition 5 (Tolerable solution set (TSS)) A tolerable solution set of
the fully hesitant fuzzy equation {< a, ha >} {< x, hx >} = {< b, hb >} is de-
noted by X∀∃ and is defined as follows:

X∀∃ =
{

x
′

∈ hx ∈ [0, 1] : (∀h ∈ ha)
(

∃h
′

∈ hb

)

s.t. h x
′

= h
′

}

= {hx ∈ [0, 1] : ha × hx ⊆ hb} .

Definition 6 (Controllable solution set (CSS)) A controllable solution
set of the fully hesitant fuzzy equation {< a, ha >} {< x, hx >} = {< b, hb >}
is denoted by X∃∀ and is defined as follows:

X∃∀ =
{

x
′

∈ hx ∈ [0, 1] : (∃h ∈ ha)
(

∀h
′

∈ hb

)

s.t. h x
′

= h
′

}

= {hx ∈ [0, 1] : ha × hx ⊇ hb} .

For dual hesitant fuzzy equation, we have the corresponding analogous defini-
tions as follows:

Definition 7 (United solution set (USS)) A united solution set of the dual
hesitant fuzzy equation

{< a, ha >} {< x, hx >}+{< b, hb >} = {< c, hc >} {< x, hx >}+{< d, hd >}

is denoted by X∃∃∃∃ and is defined as follows:

X∃∃∃∃ =
{

x
′

∈ hx ∈ [0, 1] : (∃h ∈ ha)
(

∃h
′

∈ hb

)

(∃h′′ ∈ hc)
(

∃h
′′′

∈ hd

)

s.t. h x
′

+ h′ = h′′ x
′

+ h′′
′
}

= {hx ∈ [0, 1] : (ha × hx + hb) ∩ (hc × hx + hd) 6= ∅} .
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Definition 8 (Tolerable solution set (TSS)) A tolerable solution set of
the dual hesitant fuzzy equation

{< a, ha >} {< x, hx >}+{< b, hb >} = {< c, hc >} {< x, hx >}+{< d, hd >} ,

is denoted by X∀∀∃∃ and is defined as follows:

X∀∀∃∃ =
{

x
′

∈ hx ∈ [0, 1] : (∀h ∈ ha)
(

∀h
′

∈ hb

)

(∃h′′ ∈ hc)
(

∃h
′′′

∈ hd

)

s.t. h x
′

+ h′ = h′′ x
′

+ h′′
′
}

= {hx ∈ [0, 1] : (ha × hx + hb) ⊆ (hc × hx + hd)} .

Definition 9 (Controllable solution set (CSS)) A controllable solution
set of the dual hesitant fuzzy equation

{< a, ha >} {< x, hx >}+{< b, hb >} = {< c, hc >} {< x, hx >}+{< d, hd >} ,

is denoted by X∃∃∀∀ and is defined as follows:

X∃∃∀∀ =
{

x
′

∈ hx ∈ [0, 1] : (∃h ∈ ha)
(

∃h
′

∈ hb

)

(∀h′′ ∈ hc)
(

∀h
′′′

∈ hd

)

s.t. h x
′

+ h′ = h′′ x
′

+ h′′
′
}

= {hx ∈ [0, 1] : (ha × hx + hb) ⊇ (hc × hx + hd)} .

We shall now turn to the definitions, specifying the solutions we are looking for:

Definition 10 A hesitant fuzzy set X = {< x, hx >} is called the solution of
the fully hesitant fuzzy equation {< a, ha >} {< x, hx >} = {< b, hb >}, when
hx fulfils the conditions of USS, CSS or TSS and ax = b.

Definition 11 A hesitant fuzzy element X = {< x, hx >} is called the solu-
tion of dual hesitant fuzzy equation {< a, ha >} {< x, hx >} + {< b, hb >} =
{< c, hc >} {< x, hx >} + {< d, hd >}, when hx fulfils the conditions of USS,
CSS or TSS and ax+ b = cx+ d.

4.2. Solving a fully hesitant fuzzy equation

In the fully hesitant fuzzy equation (3), assume thatA={< a, {h1, h2, . . . , hn}>}
and B = {< b, {h′

1, h
′
2, . . . , h

′
m} >}. There is an unknown fully fuzzy hesitant

vector hx, which can be obtained using the following relation: X =
{

< b
a
, hx >

}

.
For determining hx, it is assumed that ht = {h′′

1, h
′′
2, . . . , h

′′
mn}. Then, to

obtain h′′
1, h

′′
2, . . . , h

′′
mn, the following equations are introduced:

hi.h
′′
j = h′

k , ∀ 1 ≤ i ≤ n , 1 ≤ j ≤ nm , 1 ≤ k ≤ m. (3)

By solving the above equations and thereby calculating ht, the value of hx can
be determined as follows:

hx ⊆ {h′′
i ∈ ht : h′′

i ≤ 1, 1 ≤ i ≤ mn} (4)
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and if maximum hesitancy is considered, there is:

hM
x = {h′′

i ∈ ht : h′′
i ≤ 1, 1 ≤ i ≤ mn} .

To better understand the performance of the proposed method, one can see
further on the Examples 7.1 and 7.2.

Theorem 1 Equation (3) does not have a non-empty TSS.

Proof. Assume

A = {< a, {h1, h2, . . . , hn} >} and B = {< b, {h′
1, h

′
2, . . . , h

′
m} >} ,

after calculating the value of hx from (6) and the value of {h1, h2, . . . , hn} × hx,
by applying the multiplication definition, provided in (2), item 7, it can be seen
that the following always holds:

{h1, h2, . . . , hn} × hx ⊃
{

h
′

1, h
′

2, . . . , h
′

m

}

. ✷

Theorem 2 Assume that

A = {< a, {h1, h2, . . . , hn} >} , B = {< b, {h′
1, h

′
2, . . . , h

′
m} >} .

If there exists only one h′ ∈ ha and one h′′ ∈ hb such that h′′

h′
≤ 1, or if a one-

element subset of
{

h′

j

hi
:

h′

j

hi
≤ 1, ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ m

}

is considered, then

equation (3) has a fuzzy solution.

Proof Because of these assumptions, hx has only one member, therefore the
proof is complete. ✷

4.3. Solving a dual hesitant fuzzy equation

In order to solve the fully dual hesitant fuzzy equation (4), assume that

A = {< a, {h1, h2, . . . , hn} >} ,

B = {< b, {h′
1, h

′
2, . . . , h

′
m} >} ,

C = {< c, {h′′
1, h

′′
2, . . . , h

′′
k} >} and

D = {< d, {h′′′
1, h

′′′
2, . . . , h

′′′
f} >} .

There is the variable X = {< x, hx >}, which is calculated from the following

relation: X =
{

< d−b
a−c

, hx>
}

. In order to determine hx, first ht must be

calculated from (7), then each subset of ht that has values between 0 and 1 can
be considered as representing the final value.



370 F. Babakordi and N. A. Taghi-Nezhad

So, assume that ht = {h′′′′
1, h

′′′′
2, . . . , h

′′′′
nmkf}, therefore, for determining

h′′′′
1, h′′′′

2, . . . , h
′′′′

nmkf the following equation is introduced:

hi.h
′′′′

j + h′
l − hi.h

′′′′
j .h

′
l = h′′

i
′ . h′′′′

j + h′′′

j
′ − h′′

i
′ .h′′′′

j .h
′′′

j
′ ,

∀ 1 ≤ i ≤ n , 1 ≤ j ≤ nmkf , 1 ≤ l ≤ m, 1 ≤ i′ ≤ k , 1 ≤ j′ ≤ f. (5)

By solving the above equations and calculating ht, the value of ht is defined as
follows:

hx ⊆ {h′′′′
j ∈ ht : h′′′′

j ≤ 1, 1 ≤ j ≤ nmkf} (6)

and the case of the maximum hesitancy is considered as follows:

hM
x = {h′′′′

j ∈ ht : h′′′′
j ≤ 1, 1 ≤ j ≤ nmkf} .

Theorem 3 Equation (4) does not have non-empty TSS, CSS. It only has non-
empty USS.

Proof Assume that

A = {< a, {h1, h2, . . . , hn} >} ,

B = {< b, {h′
1, h

′
2, . . . , h

′
m} >} ,

C = {< c, {h′′
1, h

′′
2, . . . , h

′′
k} >}

and

D = {< d, {h′′′
1, h

′′′
2, . . . , h

′′′
f} >} ,

there is

X =

{

<
d− b

a− c
, hx>

}

.

After calculating hx from equation (6) and calculating {h1, h2, . . . , hn} × hx+
{h′

1, h
′
2, . . . , h

′
m} and {h′′

1, h
′′
2, . . . , h

′′
k} × hx+ {h′′′

1, h
′′′

2, . . . , h
′′′

f}, by ap-
plying the addition and multiplication definitions, presented in Definition 2.1,
it can be seen that none of the following cases holds:

{h1, h2, . . . , hn} × hx+ {h′
1, h

′
2, . . . , h

′
m} ⊆

{h′′
1, h

′′
2, . . . , h

′′
k} × hx+ {h′′′

1, h
′′′

2, . . . , h
′′′

f}

{h1, h2, . . . , hn} × hx+ {h′
1, h

′
2, . . . , h

′
m} ⊇

{h′′
1, h

′′
2, . . . , h

′′
k}hx+ {h′′′

1, h
′′′

2, . . . , h
′′′

f}

while the following always holds:
(

{h1, h2, . . . , hn} × hx +
{

h
′

1, h
′

2, . . . , h
′

m

})

∩
({

h
′′

1 , h
′′

2 , . . . , h
′′

k

}

× h
x
+

{

h
′′′

1 , h
′′′

2 , . . . , h
′′′

t }
)

6= ∅. ✷
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5. The proposed method for solving the n-element hesi-

tant fuzzy equations

In the previous section, a method was proposed for solving the hesitant fuzzy
equations in which hesitant fuzzy sets have only one hesitant fuzzy element.
The method and the solutions, presented there, can be extended as follows:

Assume that the goal is to solve the fully hesitant fuzzy equation AX = B,
where

A = {< a1, ha1
>,< a2, ha2

>, . . . , < an, han
>} and

B = {< b1, hb1 >,< b2, hb2 >, . . . , < bn, hbn >}

are known hesitant fuzzy sets and X = {< x1, hx1
>,< x2, hx2

>, . . . , < xn, hxn
>}

is an unknown hesitant fuzzy set.

Therefore, the following equation set is constructed:

{< a1, ha1
>} {< x1, hx1

>} = {< b1, hb1 >}
{< a2, ha2

>} {< x2, hx2
>} = {< b2, hb2 >}

.

.

.

{< an, han
>} {< xn, hxn

>} = {< bn, hbn >} .

(7)

Then, each one of these equations is solved using the method proposed in the
previous section. It is said that the fully hesitant equation AX = B has hesitant
fuzzy solution when each of the above equations has solution.

Assume now that the goal is to solve fully the dual hesitant fuzzy equation

AX +B = CX +D

where:

A = {< a1, ha1
>,< a2, ha2

>, . . . , < an, han
>} ,

B = {< b1, hb1 >,< b2, hb2 >, . . . , < bn, hbn >} ,

C = {< c1, hc1 >,< c2, hc2 >, . . . , < cn, hcn >} , and

D = {< d1, hd1
>,< d2, hd2

>, . . . , < dn, hdn
>}

are known hesitant fuzzy sets and

X = {< x1, hx1
>,< x2, hx2

>, . . . , < xn, hxn
>}
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is an unknown hesitant fuzzy set. Therefore, the following equation set is con-
structed:

{< a1, ha1
>} {< x1, hx1

>}+ {< b1, hb1 >} =

{< c1, hc1 >} {< x1, hx1
>}+ {< d1, hd1

>}

{< a2, ha2
>} {< x2, hx2

>}+ {< b2, hb2 >} =

{< c2, hc2 >} {< x2, hx2
>}+ {< d2, hd2

>}

.

.

.

{< an, han
>} {< xn, hxn

>}+ {< bn, hbn >} =

{< cn, hcn >} {< xn, hxn
>}+ {< dn, hdn

>} . (8)

Then, each one of these equations is solved using the method proposed in the
previous section. It is said that the fully dual hesitant equation AX + B =
CX + D has hesitant fuzzy solution when each of the above equations has a
solution.

6. Application of hesitant dual fuzzy equation to deter-

mining equilibrium market price

Microeconomics is a science that discusses the economic behavior and perfor-
mance of a unit of consumption (household), or of a unit of production (firm),
or of a group of consumers and producers. For example: what does a firm
produce? how does it produce its products? what price does it ask? or: what
goods does a household buy? how much of them does it buy? etc.

It is very difficult and sometimes even impossible to answer these questions in
a definitive manner, and this is especially true in the current situation, when the
corona virus exerts a very disturbing influence on the world economy, and the
decisions of the individual and group subjects are marked by a deep ambiguity
and skepticism. Definitely, the resulting kinds of uncertainties ought to be
accounted for in respective mathematical modelling. In the present section, we
discuss this kind of issues.

6.1. Demand

Individual demand is the amount of goods that the buyer is willing and able to
buy due to its price and the stability of other factors in a given period of time,
see Baumol (1972).

Definition 12 (Baumol (1972)) Demand is the maximum amount of goods
that a person buys according to its price.
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Of course, it should be noted that there is, likewise, an analogous demand
for services, such as passenger transport services.

Definition 13 Baumol (1972) Need and demand are different from each other.
We may need a lot of goods and services but we may not be able to turn this need
into demand. For example, a person may need a plane, but does not dispose of
monetary resources, necessary to buy one. Some of our needs become demand
due to price, income, etc.

The amount of demand for goods x is affected by the following factors:

Qd
x = F (Px, I, Py, T, Ax, Ed, . . .),

where:

Px is the price of goods x.

Py is the price of other goods.

I is consumer income or budget.

T is the consumer taste that can be derived from his needs, the source of
which can be due to social customs and habits or, above all, the product of his
values and beliefs.

Ax is advertising for goods x.

Ed is the factor of demand price expectations, so that the consumer demand
is influenced by his expectations of the availability or non-availability of goods
in the future and also his forecast of future price trends of this product.

If we keep factors affecting demand fixed in the above equation, except for
the price of goods x, we can write:

Qd
x = f(Px).

The demand function can be, and actually is, expressed in different forms, one
of them being, for instance, the form Qd

x = a + b Px in which a and b are real
numbers.

6.2. Supply

Individual supply is the amount of goods that the seller is willing and able to
offer in the market in a given period of time due to its price and the stability
of other factors, see Baumol (1972).

Definition 14 (Baumol (1972)) The supply of a commodity is the maximum
amount of that commodity that the seller offers according to the price of that
commodity in the market.∗

∗Note that this definition assumes, according to the classical approach, perfect competition,
as it does not account for the influence of the seller’s offer on the market price (eds.).
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Apart from the price factor Px, which is the most important variable af-
fecting supply, other factors, such as production cost (TC, which includes the
price of production institutions, etc.), Py , the price of related goods, the level
of technology or technical knowledge (T ), Es the factor of supply price expecta-
tions, etc., intervene in determining the supply of a product. In general, supply
is related to profit. If the profit increases, the supply also increases, and vice
versa; the profit, naturally, also depends on the above factors. Therefore, the
general form of the individual supply function can be assumed to be as follows:

Qs
x = F (Px, T, C, Py, T, Es, . . .).

If we assume other factors to be fixed in the above equation, except for the price
of goods, we can write:

Qs
x = f(Px).

The above equation is called the supply function. Therefore, the supply function
is a function that shows the relationship between the price of a commodity and
the supply of the same commodity, assuming that other factors are fixed.

This function should specify, in particular, the following important charac-
teristic quantities:

1. The minimum price, at which the supplier is willing to offer the goods.

2. The maximum amount offered for each price.

The supply function can be expressed in different forms without losing the
essential features of the whole subject; in particular, it can appear in the form
Qs

x = c+ dPx, in which c and d are real numbers. If it is specified in this form,
the characteristics, mentioned above, must be additionally also specified.

6.3. Equilibrium

Equilibrium is a state, in which there is no motivation, stimulus or force to
change it. If we are not at equilibrium point, we tend to change the situation,
see, e.g., Baumol (1972). The market equilibrium is attained at a point, at which
the quantity of goods demanded is equal to the quantity of goods supplied, i.e.,
QD

x = QS
x . But, in practice, determining the values of the respective parameters,

corresponding to this point, is heavily burdened by ambiguity and imprecision,
which should be considered in mathematical modeling. The use of hesitant fuzzy
numbers is very effective in such issues because it shows and covers doubts about
the amount of demand due to price instability and economic conditions.

Definition 15 We show the fuzzy price of hesitant commodity x with px =
{< p, hp >} in which p is a real and negative number and hp is a set of values
belonging to [0, 1].

Example 1 When we say that the fuzzy price of a product x is px = {< 3000 ,
{0.1, 0.4} >} tomans, it means that the price of the product is about 3000
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tomans, where it is not possible to determine the exact membership amount,
and there are various possible amounts for some reasons, owing to which the
correctness of each one is in doubt, and so the expert has considered different
degrees for the price of 3000 tomans.

Definition 16 If the price of commodity x is equal to px = {< p, hp >}, then
the hesitant fuzzy demand is as follows:

Qd
x = Apx +B (9)

whereA = {< a, ha >} and B = {< b, hb >} and a and b are positive real
numbers that must be defined in such a way that Q = ap+ b is a descending real
function and demand function is shown with the maximum hesitancy through a
QdM

x .

Definition 17 If the price of commodity x is equal to px = {< p, hp >}, then
the hesitant fuzzy supply is as follows:

Qs
x = Cpx +D (10)

where C = {< c, hc >} and D = {< d, hd >} and c and d are positive real
numbers that must be defined so that Q = cp + d is an ascending real function
and demand function is shown with the maximum hesitancy through a QdM

x .

Determining the equilibrium market price. To determine the equilib-
rium market price, we must solve the equation Qd

x = Qs
x, and hence we have:

Apx +B=Cpx +D.

The above equation is a hesitant dual fuzzy equation, from which we obtain px
using the method presented in Section 4.2. After calculating pMx (the equilibrium
price of the market with the maximum hesitancy), the equilibrium point of the
market can be calculated with the maximum hesitancy using formulas (9) and
(10).

7. Numerical examples

In this section, the effectiveness and applicability of the proposed method is
illustrated by solving some numerical examples.

Example 2 Consider the fully hesitant fuzzy equation AX = B where A =
{< 3, {0.3, 0.8} >} and B = {< 9, {0.1, 0.5, 0.9} >}. There is X = {< 3, hx >}.
Also, consider ht = {h1, h2, . . . , h6}. To determine h1, h2, . . . , h6, equations (5)
are introduced as follows:

0.3h1 = 0.1 0.3h2 = 0.5 0.3h3 = 0.9 0.8h4 = 0.1 0.8h5 = 0.5 0.8h6 = 0.9
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By solving the above equations, it can be concluded that ht =
{

1
3
, 5
3
, 3, 1

8
, 5

8
, 9

8

}

.
Therefore:

hx ⊆

{

1

3
,
1

8
,
5

8

}

and

hM
x =

{

1

3
,
1

8
,
5

8

}

.

As a result, the solution of the equation is approximately 3. However, deter-
mining the exact value of the membership degree is not possible and involves
hesitancy. Therefore, the solution of the equation, upon considering the maxi-
mum hesitancy is the following:

XM =

{

< 3,

{

1

3
,
1

8
,
5

8

}

>

}

and the general form of the solution is as follows:

X =

{

{< 3, hx >} :hx ⊆

{

1

3
,
1

8
,
5

8

}}

.

Now, a decision maker can choose the final solution according to the conditioning
and perception of the real world problem.

Example 3 The goal is to solve the fully hesitant fuzzy equation AX = B where
A = {< 2, {0.5, 0.7, 0.9} >,< 6, {0.8, 0.6} >,< 9, {0.3, 0.6, 0.4} > ,
< 5, {0.8, 0.7, 0.5 >,< 2, {0.8, 0.9} >}
and
B = {< 3, {0.1, 0.4} >,< 18, {0.3, 0.5, 0.2} >,< 36, {0.1, 0.3} >,
< 25, {0.6, 0.2 >,< 12, {0.3, 0.4, 0.5} >}.

To find the solution of
AX = B (X = {< x1, hx1

>,< x2, hx2
>,< x3, hx3

>,< x4, hx4
>}),

the following equations are constructed:

a) {< 2, {0.5, 0.7, 0.9}>} {< x1, hx1
>} = {< 3, {0.1, 0.4}>}

b) {< 6, {0.8, 0.6}}> {< x2, hx2
>}

= {< 18, {0.3, 0.5, 0.2}>} {< 6, {0.8, 0.6}}> {< x2, hx2
>}

= {< 18, {0.3, 0.5, 0.2}>}

c){< 9, {0.3, 0.6, 0.4} >} {< x3, hx3
>} = {< 36, {0.1, 0.3} >}

d) {< 5, {0.8, 0.7, 1 >} {< x4, hx4
>} = {< 25, {0.6, 0.2 >}

e) < 2, {0.8, 0.9} > {< x5, hx5
>} = {< 12, {0.3, 0.4, 0.5} >}
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To solve equation (a), there is:

2x1 = 3 =⇒ x1 =
3

2

and to find hx1
= {h1, h2, . . . , h6}, the following equations are solved:

0.5h1 = 0.1 , 0.7h3 = 0.1, 0.9h5 = 0.1

0.5h2 = 0.4, 0.7h4 = 0.4, 0.9h6 = 0.4.

Therefore, hx =
{

1
5
, 4

5
, 1

7
, 4

7
, 1

9
, 4

9

}

. Hence, the solution of equation (a) is

<
3

2

{

1

5
,
4

5
,
1

7
,
4

7
,
1

9
,
4

9

}

> .

In a similar way, the solutions of equations (b) to (e) are obtained, respectively,
as:

(b) < 3,
{

3
8
, 3

6
, 5

8
, 5

6
, 2

8
, 2

6

}

>,

(c) < 4,
{

1
3
, 1

6
, 1

4
, 1, 3

6
, 3

4

}

>,

(d) < 5,
{

6
8
, 2

8
, 6

7
, 2

7
, 6

10
, 2

10

}

>

and

(e) < 6,
{

3
8
, 4

8
, 5

8
, 3

9
, 4

9
, 5

9

}

>.

Finally, upon rounding to two decimal places, the solution of equation AX =
B can be presented as follows:

X = {< 1.5, {0.11, 0.14, 0.2, 0.44, 0.57, 0.8} >,

< 3, {0.25, 0.33, 0.38, 0.5, 0.62, 0.83} >,

< 4, {0.17, 0.25, 0.33, 0.5, 0.75, 1} >,

< 5, 0.2, 0.25, 0.29, 0.6, 0.75, 0.86} >,

< 6, 0.33, 0.38, 0.44, 0.5, 0.56, 0.62 >}

The set X is depicted in Fig. 1.

Example 4 Assume

Qs
x = {< −20, {0.1, 0.4} >}+ {< 4, {0.3, 0.8} >} px

and the hesitant fuzzy demand function

Qd
x = {< 100, {0.5, 0.7} >}+ {< −2, {0.1, 0.5} >} px.
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Figure 1. Representation of X from Example 3

The goal is to calculate the hesitant fuzzy market equilibrium price. The equilib-
rium condition is Qs

x = Qd
x. Therefore, the following equation must be solved:

{< −20, {0.1, 0.4} >}+ {< 4, {0.3, 0.8} >} px

= {< 100, {0.5, 0.7} >}+ {< −2, {0.1, 0.5} >} px.

The hesitant fuzzy price is px = {< 20, hpx
>} and for determining hpx

, it is
assumed that ht = {h1, h2, . . . , h16}. Also, equations in (7) are constructed as
the following ones:

0.3h1 + 0.1− 0.03h1 = 0.1h1 + 0.5− 0.05h1 ,

0.3h2 + 0.1− 0.03h2 = 0.1h2 + 0.7− 0.07h2 ,

0.3h3 + 0.1− 0.03h3 = 0.5h3 + 0.5− 0.25h3 ,

0.3h4 + 0.1− 0.03h4 = 0.5h4 + 0.7− 0.35h4 ,

0.3h2 + 0.1− 0.03h2 = 0.1h2 + 0.7− 0.07h2 ,

0.3h5 + 0.4− 0.12h5 = 0.1h5 + 0.5− 0.05h5 ,

0.3h6 + 0.4− 0.12h6 = 0.1h6 + 0.7− 0.07h6,

0.3h7 + 0.4− 0.12h7 = 0.5h7 + 0.5− 0.25h7,

0.3h8 + 0.4− 0.12h8 = 0.3h8 + 0.7− 0.35h8,

0.8h9 + 0.1− 0.08h9 = 0.1h9 + 0.5− 0.05h9,

0.8h10 + 0.1− 0.08h10 = 0.1h10 + 0.7− 0.07h10,
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0.8h11 + 0.1− 0.08h11 = 0.5h11 + 0.5− 0.25h11,

0.8h12 + 0.1− 0.08h12 = 0.5h12 + 0.7− 0.35h12,

0.8h13 + 0.4− 0.32h13 = 0.1h13 + 0.5− 0.05h13,

0.8h14 + 0.4− 0.32h14 = 0.1h14 + 0.7− 0.07h14,

0.8h15 + 0.4− 0.32h15 = 0.5h15 + 0.5− 0.25h15,

0.8h16 + 0.4− 0.32h16 = 0.5h16 + 0.7− 0.35h16.

By solving the above equations, the following result is obtained:

ht =

{

2

11
,
5

2
, 20, 5,

10

13
, 2, −

10

7
, 10,

40

67
,
60

69
,
40

47
,
60

57
,
10

43
,
2

3
,
10

23
,
10

11

}

.

Therefore, from (6) hpx
is obtained as:

hpx
⊆

{

2

11
,
10

13
,
40

67
,
60

69
,
40

47
,
10

43
,
2

3
,
10

23
,
10

11

}

.

As a result, the market equilibrium price is as follows:

px =

{

{< 20, hpx
>} : hpx

⊆

{

2

11
,
10

13
,
40

67
,
60

69
,
40

47
,
10

43
,
2

3
,
10

23
,
10

11

}

, [??]

}

Therefore, the market equilibrium price is approximately 20 tomans. However,
determining the exact value of the membership degree is not possible. There are
various possible values such that their accuracy is not certain. Hence, different
degrees are considered. Finally, a decision maker can choose the final solution
according to the perception of the real world problem.

8. Conclusion

Models of many economic problems, such as determining market equilibrium
price, can be formulated in terms of linear equations. In many of these problems
the parameters are ambiguous and uncertain, and this fact must be taken into
consideration when modeling the respective equations. Whenever the parame-
ters are hesitant fuzzy sets, one has to deal with hesitant fuzzy equations. As the
world economy has faced recently a severe crisis, involving abruptly increasing
degrees of uncertainty, hesitancy must be considered when, for instance, defin-
ing the market price in mathematical representation. Therefore, in this paper
the tolerable solution set and the controllable solution set are defined in order
to introduce and solve effectively the fully hesitant fuzzy equation AX=B and
the dual hesitant fuzzy equation AX + B = CX +D. Also, an application of
hesitant fuzzy equation in determining the market equilibrium price is presented
as a practical example. It is obvious that there can be more general studies on
other types of problems that lead to one type of linear equation systems. At
the end, various numerical examples are solved using the proposed method to
show the simplicity and the effectiveness of this method.
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