Identyfikatory
Warianty tytułu
MPPT ogniwa paliwowego PEM wykorzystującego przetwornik podwyższający napięcie DC-DC oparty na SVM
Języki publikacji
Abstrakty
Detrimental environmental influences and restricted quantities of conventional energies impose the employment of renewable energies (REs). Regrettably, REs for instance wind and solar energies are sporadic, therefore they have to be stored in different forms for employment throughout their absenteeism. For that purpose, REs can be stored excellently through generation of hydrogen using electrolyzer throughout abundance, then generation of electricity using fuel cell (FC) throughout their absenteeism. Concerning the merits of the proton exchange membrane FC (PEMFC), it is recommended more than different types of FCs. The PEMFC power lacks constancy, as it relies on pressure of hydrogen, temperature, and loading. Hence, a maximum power point tracking (MPPT) technique have to be employed with PEMFC. The procedures formerly employed possess some demerits, for instance delay of reaction, immensity of oscillation, and hugeness of overshoot and undershoot, accordingly this research addresses a PEMFC MPPT based on support vector machine (SVM). Simulation findings of employing the SVM for PEMFC MPPT expose its merits over other techniques in terms of equilibrium among speediness of reaction, tininess of oscillations, and smallness of overshoot and undershoot.
Niekorzystne wpływy środowiskowe i ograniczone ilości konwencjonalnych energii wymuszają wykorzystanie odnawialnych źródeł energii (RE). Niestety, RE, na przykład energia wiatrowa i słoneczna, są sporadyczne, dlatego muszą być przechowywane w różnych formach do wykorzystania w czasie nieobecności. W tym celu RE mogą być doskonale przechowywane poprzez wytwarzanie wodoru za pomocą elektrolizera w obfitości, a następnie wytwarzanie energii elektrycznej za pomocą ogniwa paliwowego (FC) w czasie nieobecności. Jeśli chodzi o zalety membrany wymiany protonów FC (PEMFC), jest ona bardziej zalecana niż inne typy FC. Moc PEMFC nie jest stała, ponieważ opiera się na ciśnieniu wodoru, temperaturze i obciążeniu. Dlatego też w przypadku PEMFC należy zastosować technikę śledzenia maksymalnego punktu mocy (MPPT). Wcześniej stosowane procedury mają pewne wady, na przykład opóźnienie reakcji, ogrom oscylacji i ogrom przekroczenia i niedoregulowania, dlatego też niniejsze badania dotyczą MPPT PEMFC opartego na maszynie wektorów nośnych (SVM). Wyniki symulacji wykorzystującej SVM do pomiaru MPPT PEMFC ujawniają jej zalety w porównaniu z innymi technikami w zakresie równowagi między szybkością reakcji, niewielkimi oscylacjami oraz niewielkimi przekroczeniami i niedoregulowaniami.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
53--58
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Northern Border University, Arar 73222, Saudi Arabia
autor
- Northern Border University, Arar 73222, Saudi Arabia
Bibliografia
- [1] A. Dodón, V. Quintero, M. Chen Austin, D. Mora, “Bio-Inspired Electricity Storage Alternatives to Support Massive Demand- Side Energy Generation: A Review of Applications at Building Scale,” Biomimetics, vol. 6, no. 3, p. 51, Aug. 2021, DOI: 10.3390/biomimetics6030051.
- [2] M. Nasser, H. Hassan, “Assessment of standalone streetlighting energy storage systems based on hydrogen of hybrid PV/electrolyzer/fuel cell/ desalination and PV/batteries,” J Energy Storage, vol. 63, p. 106985, Jul. 2023, DOI: 10.1016/j.est.2023.106985.
- [3] M. Calati, K. Hooman, S. Mancin, “Thermal storage based on phase change materials (PCMs) for refrigerated transport and distribution applications along the cold chain: A review,” International Journal of Thermofluids, vol. 16, p. 100224, Nov. 2022, DOI: 10.1016/j.ijft.2022.100224.
- [4] M. Korpås, “Distributed Energy Systems with Wind Power and Energy Storage,” Norwegian University of Science and Technology, Trondheim, Norway, 2004.
- [5] S. Mekhilef, R. Saidur, A. Safari, “Comparative study of different fuel cell technologies,” Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 981–989, Jan. 2012, DOI: 10.1016/j.rser.2011.09.020.
- [6] Z. Jakšić, O. Jakšić, “Biomimetic Nanomembranes: An Overview,” Biomimetics, vol. 5, no. 2, p. 24, May 2020, DOI: 10.3390/biomimetics5020024.
- [7] H. Rezk, “Performance of incremental resistance MPPT based proton exchange membrane fuel cell power system,” in 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), IEEE, Dec. 2016, pp. 199–205. DOI: 10.1109/MEPCON.2016.7836891.
- [8] N. Karami, L. El Khoury, G. Khoury, N. Moubayed, “Comparative study between P&O and incremental conductance for fuel cell MPPT,” in International Conference on Renewable Energies for Developing Countries 2014, IEEE, Nov. 2014, pp. 17–22. DOI: 10.1109/REDEC.2014.7038524.
- [9] V. Karthikeyan, P. V. Das, F. Blaabjerg, “Implementation of MPPT Control in Fuel Cell Fed High Step-up Ratio DC-DC Converter,” in 2018 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), IEEE, Oct. 2018, pp. 689–693. DOI: 10.1109/ICPEICES.2018.8897443.
- [10] N. Naseri, S. El Hani, A. Aghmadi, K. El Harouri, M. S. Heyine, H. Mediouni, “Proton Exchange Membrane Fuel Cell Modelling and Power Control by P&O Algorithm,” in 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), IEEE, Dec. 2018, pp. 1–5. DOI: 10.1109/IRSEC.2018.8703002.
- [11] K. J. Reddy, N. Sudhakar, “High Voltage Gain Interleaved Boost Converter with Neural Network Based MPPT Controller for Fuel Cell Based Electric Vehicle Applications,” IEEE Access, vol. 6, pp. 3899–3908, 2018, DOI: 10.1109/ACCESS.2017.2785832.
- [12] M. Derbeli, C. Napole, O. Barambones, “Machine Learning Approach for Modeling and Control of a Commercial Heliocentris FC50 PEM Fuel Cell System,” Mathematics, vol. 9, no. 17, p. 2068, Aug. 2021, DOI: 10.3390/math9172068.
- [13] K. J. Reddy, N. Sudhakar, “A new RBFN based MPPT controller for grid-connected PEMFC system with high step-up three-phase IBC,” Int J Hydrogen Energy, vol. 43, no. 37, pp. 17835–17848, Sep. 2018, DOI: 10.1016/j.ijhydene.2018.07.177.
- [14] A. Harrag, H. Bahri, “Novel neural network IC-based variable step size fuel cell MPPT controller,” Int J Hydrogen Energy, vol. 42, no. 5, pp. 3549–3563, Feb. 2017, DOI: 10.1016/j.ijhydene.2016.12.079.
- [15] A. Harrag, H. Bahri, “A Novel Single Sensor Variable Step Size Maximum Power Point Tracking for Proton Exchange Membrane Fuel Cell Power System,” Fuel Cells, vol. 19, no. 2, pp. 177–189, Apr. 2019, DOI: 10.1002/fuce.201800122.
- [16] H. Rezk, A. Fathy, “Performance Improvement of PEM Fuel Cell Using Variable Step-Size Incremental Resistance MPPT Technique,” Sustainability, vol. 12, no. 14, p. 5601, Jul. 2020, DOI: 10.3390/su12145601.
- [17] A. Harrag, S. Messalti, “Variable Step Size IC MPPT Controller for PEMFC Power System Improving Static and Dynamic Performances,” Fuel Cells, vol. 17, no. 6, pp. 816– 824, Dec. 2017, DOI: 10.1002/fuce.201700047.
- [18] D. N. Luta, A. K. Raji, “Comparing fuzzy rule-based MPPT techniques for fuel cell stack applications,” Energy Procedia, vol. 156, pp. 177–182, Jan. 2019, DOI: 10.1016/j.egypro.2018.11.124.
- [19] M. Gheisarnejad, J. Boudjadar, M.-H. Khooban, “A New Adaptive Type-II Fuzzy-Based Deep Reinforcement Learning Control: Fuel Cell Air-Feed Sensors Control,” IEEE Sens J, vol. 19, no. 20, pp. 9081–9089, Oct. 2019, DOI: 10.1109/JSEN.2019.2924726.
- [20] M. Aliasghary, “Control of PEM Fuel Cell Systems Using Interval Type-2 Fuzzy PID Approach,” Fuel Cells, vol. 18, no. 4, pp. 449–456, Aug. 2018, DOI: 10.1002/fuce.201700157.
- [21] A. Harrag, H. Rezk, “Indirect P&O type-2 fuzzy-based adaptive step MPPT for proton exchange membrane fuel cell,” Neural Comput Appl, vol. 33, no. 15, pp. 9649–9662, Aug. 2021, DOI: 10.1007/s00521-021-05729-w.
- [22] M. J. Khan, L. Mathew, “Fuzzy logic controller-based MPPT for hybrid photo-voltaic/wind/fuel cell power system,” Neural Comput Appl, vol. 31, no. 10, pp. 6331–6344, Oct. 2019, DOI: 10.1007/s00521-018-3456-7.
- [23] F. Aggad, “Modeling, Design and Energy Management of a Residential Standalone Photovoltaic-Fuel Cell Power System,” Przegląd Elektrotechniczny, vol. 1, no. 8, pp. 81–89, Jul. 2020, DOI: 10.15199/48.2020.08.17.
- [24] M. Derbeli, L. Sbita, M. Farhat, O. Barambones, “Proton exchange membrane fuel cell — A smart drive algorithm,” in 2017 International Conference on Green Energy Conversion Systems (GECS), IEEE, Mar. 2017, pp. 1–5. DOI: 10.1109/GECS.2017.8066167.
- [25] M. H. Wang, M. Huang, W. Jiang, K. Liou, “Maximum power point tracking control method for proton exchange membrane fuel cell,” IET Renewable Power Generation, vol. 10, no. 7, pp. 908–915, Aug. 2016, DOI: 10.1049/iet-rpg.2015.0205.
- [26] M. Derbeli, O. Barambones, M. Farhat, J. A. Ramos-Hernanz, L. Sbita, “Robust high order sliding mode control for performance improvement of PEM fuel cell power systems,” Int J Hydrogen Energy, vol. 45, no. 53, pp. 29222–29234, Oct. 2020, DOI: 10.1016/j.ijhydene.2020.07.172.
- [27] M. Y. Silaa, M. Derbeli, O. Barambones, A. Cheknane, “Design and Implementation of High Order Sliding Mode Control for PEMFC Power System,” Energies, vol. 13, no. 17, p. 4317, Aug. 2020, DOI: 10.3390/en13174317.
- [28] K. J. Reddy, N. Sudhakar, “ANFIS-MPPT control algorithm for a PEMFC system used in electric vehicle applications,” Int J Hydrogen Energy, vol. 44, no. 29, pp. 15355–15369, Jun. 2019, DOI: 10.1016/j.ijhydene.2019.04.054.
- [29] H. Ashraf, M. M. Elkholy, S. O. Abdellatif, A. A. El Fergany, “Synergy of neuro-fuzzy controller and tuna swarm algorithm for maximizing the overall efficiency of PEM fuel cells stack including dynamic performance,” Energy Conversion and Management: X, vol. 16, p. 100301, Dec. 2022, DOI: 10.1016/j.ecmx.2022.100301.
- [30] A. Raj, P. Lekhaj, “An ANFIS Based MPPT Controller for Fuel Cell Powered Induction Motor Drive,” in 2018 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), IEEE, May 2018, pp. 201–205. DOI: 10.1109/ICSGCE.2018.8556712.
- [31] M. Derbeli, A. Charaabi, O. Barambones, C. Napole, “High- Performance Tracking for Proton Exchange Membrane Fuel Cell System PEMFC Using Model Predictive Control,” Mathematics, vol. 9, no. 11, p. 1158, May 2021, DOI: 10.3390/math9111158.
- [32] S. Ahmadi, Sh. Abdi, M. Kakavand, “Maximum power point tracking of a proton exchange membrane fuel cell system using PSO-PID controller,” Int J Hydrogen Energy, vol. 42, no. 32, pp. 20430–20443, Aug. 2017, DOI: 10.1016/j.ijhydene.2017.06.208.
- [33] A. Fathy, M. A. Abdelkareem, A. G. Olabi, H. Rezk, “A novel strategy based on salp swarm algorithm for extracting the maximum power of proton exchange membrane fuel cell,” Int J Hydrogen Energy, vol. 46, no. 8, pp. 6087–6099, Jan. 2021, DOI: 10.1016/j.ijhydene.2020.02.165.
- [34] K. P. S. Rana, V. Kumar, N. Sehgal, S. George, “A Novel dP/dI feedback based control scheme using GWO tuned PID controller for efficient MPPT of PEM fuel cell,” ISA Trans, vol. 93, pp. 312–324, Oct. 2019, DOI: 10.1016/j.isatra.2019.02.038.
- [35] A. Fathy, H. Rezk, T. M. Alanazi, "Recent Approach of Forensic-Based Investigation Algorithm for Optimizing Fractional Order PID-Based MPPT With Proton Exchange Membrane Fuel Cell," IEEE Access, vol. 9, pp. 18974-18992, 2021, DOI: 10.1109/ACCESS.2021.3054552.
- [36] S. Suthaharan, Support Vector Machine. In: Machine Learning Models and Algorithms for Big Data Classification. Integrated Series in Information Systems, vol. 36. Springer, Boston, MA, 2016. DOI: 10.1007/978-1-4899-7641-3_9
- [37] P. V. Mahesh, S. Meyyappan, R. Alla, “Support Vector Regression Machine Learning based Maximum Power Point Tracking for Solar Photovoltaic systems,” Int J Elec Comp Eng Sys, vol. 14, no. 1, pp. 100-108, 2023. DOI: 10.32985/ijeces.14.1.11.
- [38] C. González-Castaño, J. Marulanda, C. Restrepo, S. Kouro, A. Alzate, J. Rodriguez, “Hardware-in-the-Loop to Test an MPPT Technique of Solar Photovoltaic System: A Support Vector Machine Approach,” Sustainability, vol. 13, no. 6, 3000, 2021. DOI: 10.3390/su13063000
- [39] A. Kheirandish, N. Shafiabady, M. Dahari, M. S. Kazemi, D. Isa, “Modeling of commercial proton exchange membrane fuel cell using support vector machine,” Int J Hydrogen Energy, vol. 41, no. 26, pp. 11351–11358, Jul. 2016, DOI: 10.1016/j.ijhydene.2016.04.043.
- [40] I. S. Han, C. B. Chung, “Performance prediction and analysis of a PEM fuel cell operating on pure oxygen using data-driven models: A comparison of artificial neural network and support vector machine,” Int J Hydrogen Energy, vol. 41, no. 24, pp. 10202–10211, Jun. 2016, DOI: 10.1016/j.ijhydene.2016.04.247.
- [41] Z. D. Zhong, X.-J. Zhu, G. Y. Cao, “Modeling a PEMFC by a support vector machine,” J Power Sources, vol. 160, no. 1, pp. 293–298, Sep. 2006, DOI: 10.1016/j.jpowsour.2006.01.040.
- [42] I. Han, C. Han, C. Chung, “Melt index modeling with support vector machines, partial least squares, and artificial neural networks,” J Appl Polym Sci, vol. 95, no. 4, pp. 967–974, Feb. 2005, DOI: 10.1002/app.20979.
- [43] B. Zhao, “Modeling pressure drop coefficient for cyclone separators: A support vector machine approach,” Chem Eng Sci, vol. 64, no. 19, pp. 4131–4136, Oct. 2009, DOI: 10.1016/j.ces.2009.06.017.
- [44] C. F. Kung, P. Y. Hao, “Fuzzy Least Squares Support Vector Machine with Fuzzy Hyperplane,” Neural Process Lett, vol. 55, no. 6, pp. 7415–7446, Dec. 2023, DOI: 10.1007/s11063-023- 11267-4.
- [45] A. M. Agwa, T.I. Alanazi, H. Kraiem, E. Touti, A. Alanazi, D. K. Alanazi, “MPPT of PEM Fuel Cell Using PI-PD Controller Based on Golden Jackal Optimization Algorithm,” Biomimetics, vol. 8, no. 5, 4262023, 2023. DOI: 10.3390/biomimetics8050426.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6b54dc5-944e-486c-9f51-2a2e546e19c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.