PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recognizing the surgical situs in minimally invasive hip arthroplasty: A comparison of different filtering techniques

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Detecting the soft tissue envelope and determining the work space available of the surgical situs during surgery is important for advanced instrument navigation techniques, wound care treatment, augmented reality, and instrument design. Different filtering techniques were evaluated to increase detectability of the soft tissue envelope. Methods: An algorithm was built for a time of flight (TOF) camera which recognizes the boarders of the soft tissue envelope. Different filtering techniques were tested on a dataset of eight surgical siti. Results: By using a median filter, a temporal filter and combining different input information provided by the time of flight camera by a logic operation the proposed algorithm was able to recognize the surgical situs in 73% of the images on average. Conclusions: The use of a TOF camera can introduce a new tool for recognizing the soft tissue envelope of a surgical approach.
Twórcy
autor
  • Innsbruck Medical University, Department of Orthopaedic Surgery, Experimental Orthopaedics, Innrain 36, A-6020 Innsbruck, Austria
autor
  • Innsbruck Medical University, Department of Internal Medicine, Innsbruck, Austria
  • Innsbruck Medical University, Department of Orthopaedic Surgery, Innsbruck, Austria
  • Stryker IMT, Freiburg, Germany
autor
  • Innsbruck Medical University, Department of Orthopaedic Surgery, Experimental Orthopaedics, Innrain 36, A-6020 Innsbruck, Austria
Bibliografia
  • [1] Fuchs S, May S. Calibration and registration for precise surface reconstruction with TOF cameras; 2007, http://www.robotic.dlr.de/fileadmin/robotic/fuchs/ TOFCamerasFuchsMay2007.pdf.
  • [2] Prusak A, Melnychuk O, Roth H, Schiller I, Koch R. Pose estimation and map building with a time of flight camera for robot navigation. Int J Intell Syst Technol Appl 2008;5(3/4):355–64. doi: 10.1504/IJISTA.2008.021298.
  • [3] May S, Fuchs S, Droeschel D, Holz D, Nuchter A. Robust 3d-mapping with time-of-flight cameras. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS'09. Piscataway, NJ, USA: IEEE Press; 2009. p. 1673–8. URL http://dl.acm.org/citation.cfm?id=1733343.1733640.
  • [4] Kolb A, Barth E, Koch R, Larsen R. Time-of-flight cameras in computer graphics. Comput Graphics Forum 2010;29 (1):141–59. doi: 10.1111/j.1467-8659.2009.01583.x.
  • [5] Soutschek S, Penne J, Hornegger J, Kornhuber J. 3-d gesture-based scene navigation in medical imaging applications using time-of-flight cameras. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPRW 2008. 2008. pp. 1–6. http://dx.doi.org/10.1109/CVPRW.2008.4563162.
  • [6] Kollorz E, Penne J, Hornegger J, Barke A. Gesture recognition with a time of flight camera. Int J Intell Syst Technol Appl 2008;5(3/4):334–43. doi: 10.1504/IJISTA.2008.021296.
  • [7] Holte MB, Moeslund TB, Fihl P. Fusion of range and intensity information for view invariant gesture recognition.In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPRW 2008. vols. 1–7. June 2008. p. 23–8. http://dx.doi.org/10.1109/CVPRW.2008.4563161. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp? tp=&arnumber=4563161&isnumber=4562948.
  • [8] Penne J, Hller K, Strmer M, Schrauder T, Schneider A, Engelbrecht R, et al. Time-of-flight 3-d endoscopy. In: Yang G-Z, Hawkes D, Rueckert D, Noble A, Taylor C, editors. Medical Image Computing and Computer- Assisted Intervention MICCAI 2009, vol. 5761 of Lecture Notes in Computer Science. Berlin; Heidelberg: Springer; 2009. p. 467–74. doi: 10.1007/978-3-642-04268-3_58.
  • [9] Penne J, Schaller C, Hornegger J, Kuwert T. Robust real-time 3d respiratory motion detection using time-of-flight cameras. Int J Comput Assist Radiol Surg 2008;3:427–31. doi: 10.1007/s11548-008-0245-2.
  • [10] Mersmann S, Mller M, Seitel A, Arnegger F, Tetzlaff R, Dinkel J, et al. Time-of-flight camera technique for augmented reality in computer-assisted interventions; 2011;79642C, doi: 10.1117/12.878149.
  • [11] Stone E, Skubic M. Evaluation of an inexpensive depth camera for in-home gait assessment. J Ambient Intell Smart Environ 2011;3(4):349–61. doi: 10.3233/AIS-2011- 0124.
  • [12] Blais F. Review of 20 years of range sensor development. J Electron Imaging 2004;13(1):231–43. doi: 10.1117/1. 1631921.
  • [13] Salvi J, Batlle E, Matabosch C, Llado X. Overview of surface registration techniques including loop minimization for three-dimensional modeling and visual inspection. J Electron Imaging 2008;17(3):031103. doi: 10.1117/1.2957604.
  • [14] Nogler M, Krismer M, Hozack WJ, Merritt P, Rachbauer F, Mayr E. A double offset broach handle for preparation of the femoral cavity in minimally invasive direct anterior total hip arthroplasty. J Arthroplast 2006;21(8):1206–8. http://dx.doi.org/10.1016/j.arth.2006.08.003. URL http://www.sciencedirect.com/science/article/pii/ S0883540306006243.
  • [15] Gil P, Pomares J, Torres F. Analysis and adaptation of integration time in PMD camera for visual servoing. In: 20th International Conference on Pattern Recognition (ICPR). 2010. pp. 311–5. doi: 10.1109/ICPR.2010.85.
  • [16] Ringbeck T, Hagebeuker B. A 3d time of flight camera for object detection. Opt 3-D Meas Tech 2007;9:1–10.
  • [17] Delaunay B. Sur la sphere vide, Izvestia Akademii Nauk SSSR. Otd Mat Estestv Nauk 1934;7:793–800.
  • [18] Oprisescu S, Falie D, Ciuc M, Buzuloiu V. Measurements with toe cameras and their necessary corrections. In: International Symposium on Signals, Circuits and Systems, ISSCS 2007, vol. 1. 2007. pp. 1–4. doi: 10.1109/ISSCS.2007. 4292691.
  • [19] Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 1986;8(6):679–98. URL http://www.ncbi.nlm.nih.gov/pubmed/21869365.
  • [20] Danciu G, Ivanovici M, Buzuloiu V. Improved contours for tof cameras based on vicinity logic operations. In: 12th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM). 2010. pp. 989–92. doi: 10.1109/OPTIM.2010.5510428.
  • [21] Bender B, Nogler M, Hozack WJ. Direct anterior approach for total hip arthroplasty. Orthop Clin N Am 2009;40(3):321–8. the Anterior Approach for Hip Reconstruction. doi: 10.1016/ j.ocl.2009.01.003. URLhttp://www.sciencedirect.com/science/article/pii/ S0030589809000042.
  • [22] Nemeth ME, Sprigle S, Gajjala A, Clinical usability of a wound measurement device. https://smartech.gatech.edu/handle/1853/43276.
  • [23] Lindner M, Kolb A, Hartmann K. Data-fusion of PMD-based distance-information and high-resolution RGB-images. In: International Symposium on Signals, Circuits and Systems, 2007. ISSCS 2007, vol. 1. 2007. pp. 1–4. doi: 10.1109/ ISSCS.2007.4292666.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą nau
PL
W artykule w opisie bibliograficznym brak poz. [19]
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6aaa410-155c-4275-b3e8-3ca739dcf785
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.