PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predicting Water Quality Parameters in a Complex River System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research applied a machine learning technique for predicting the water quality parameters of Kelantan River using the historical data collected from various stations. Support Vector Machine (SVM) was used to develop the prediction model. Six water quality parameters (dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia nitrogen (NH3-N), and suspended solids (SS)) were predicted. The dataset was obtained from the measurement of 14 stations of Kelantan River from September 2005 to December 2017 with a total sample of 148 monthly data. We defined 3 schemes of prediction to investigate the contribution of the attribute number and the model performance. The outcome of the study demonstrated that the prediction of the suspended solid parameter gave the best performance, which was indicated by the highest values of the R2 score. Meanwhile, the prediction of the COD parameter gave the lowest score of R2 score, indicating the difficulty of the dataset to be modelled by SVM. The analysis of the contribution of attribute number shows that the prediction of the four parameters (DO, BOD, NH3-N, and SS) is directly proportional to the performance of the model. Similarly, the best prediction of the pH parameter is obtained from the utilization of the least number of attributes found in scheme 1.
Rocznik
Strony
250--257
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
  • School of Computing, Telkom University, 40257 Bandung, Indonesia
  • Research Centre of Human Centric Engineering, Telkom University, 40257 Bandung, Indonesia
autor
  • Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000 Kajang, Selangor Darul Ehsan, Malaysia
  • Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000 Kajang, Selangor Darul Ehsan, Malaysia
  • College of Graduate Studies, Universiti Tenaga Nasional (UNITEN), 43000 Kajang, Selangor Darul Ehsan, Malaysia
  • Department of Chemistry, Kaduna State University (KASU), Tafawa Balewa Way, P.M.B. 2339, Kaduna, Niger
Bibliografia
  • 1. Antanasijević, D., Pocajt, V., Perić-Grujić, A., Ristić, M., 2014. Modelling of dissolved oxygen in the danube river using artificial neural networks and Monte carlo simulation uncertainty analysis. J. Hydrol. 519, 1895–1907. https://doi.org/10.1016/j.jhydrol.2014.10.009
  • 2. Elkiran, G., Nourani, V., Abba, S.I., Abdullahi, J., 2018. Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river. Glob. J. Environ. Sci. Manag. 4, 439–450. https://doi.org/10.22034/gjesm.2018.04.005
  • 3. Emamgholizadeh, S., Bateni, S.M., Jeng, D.S., 2013. Artificial intelligence-based estimation of flushing half-cone geometry. Eng. Appl. Artif. Intell. 26, 2551–2558. https://doi.org/10.1016/j.engappai.2013.05.014
  • 4. Heddam S. 2016a. Multilayer perceptron neural network-based approach for modeling phycocyanin pigment concentrations: case study from lower Charles River buoy, USA. Environ. Sci. Pollut. Res. 23, 17210–17225. https://doi.org/10.1007/s11356–016–6905–9
  • 5. Heddam S. 2016b. Generalized regression neural network-based approach as a new tool for predicting total dissolved gas (TDG) downstream of spillways of dams: a case study of columbia river basin dams, USA. Environ. Process. 4, 235–253. https://doi.org/10.1007/s40710–016–0196–5
  • 6. Mustafa, A., Sulaiman, O., Shahooth, S., 2017. Application of QUAL2K for Water Quality Modeling and Management in the lower reach of the Diyala river. Iraqi J. Civ. Eng. 11, 66–80.
  • 7. Mustafa, H.M., Hayder, G., 2020. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Eng. J. https://doi.org/10.1016/j.asej.2020.05.009
  • 8. Najah, A., Elshafie, A., Karim, O.A., Jaffar, O., 2009. Prediction of johor river water quality parameters using artificial neural networks. Eur. J. Sci. Res. 28, 422–435.
  • 9. Nikoo, M.R., Mahjouri, N., 2013. Water Quality Zoning Using Probabilistic Support Vector Machines and Self-Organizing Maps. Water Resour. Manag. 27, 2577–2594. https://doi.org/10.1007/s11269–013–0304–5
  • 10. Slaughter, A.R., Hughes, D.A., Retief, D.C.H., Mantel, S.K., 2017. A management-oriented water quality model for data scarce catchments. Environ. Model. Softw. 97, 93–111. https://doi.org/10.1016/j.envsoft.2017.07.015
  • 11. Tiyasha, Tung, T.M., Yaseen, Z.M., 2020. A survey on river water quality modelling using artificial intelligence models: 2000–2020. J. Hydrol. 585, 124670. https://doi.org/10.1016/j.jhydrol.2020.124670
  • 12. Tomas, D., Čurlin, M., Marić, A.S., 2017. Assessing the surface water status in Pannonian ecoregion by the water quality index model. Ecol. Indic. 79, 182– 190. https://doi.org/10.1016/j.ecolind.2017.04.033
  • 13. Vapnik, V., 1998. Statistical Learning Theory. Wiley-Interscience, New York.
  • 14. Vapnik, V., 1995. The Nature of Statistical Learning Theory. Springer, Berlin.
  • 15. Wu, Z., Wang, X., Chen, Y., Cai, Y., Deng, J., 2018. Assessing river water quality using water quality index in Lake Taihu Basin, China. Sci. Total Environ. 612, 914–922. https://doi.org/10.1016/j.scitotenv.2017.08.293
  • 16. Zhang, W., Wang, Y., Peng, H., Li, Y., Tang, J., Wu, K.B., 2010. A coupled water quantity-quality model for water allocation analysis. Water Resour. Manag. 24, 485–511. https://doi.org/10.1007/s11269–009–9456–8
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6a7b576-66ea-4638-8517-2a42c029562c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.