Identyfikatory
Warianty tytułu
Oparta na niezbilansowanych danych analiza niezawodności produktów podlegających procesom powstawania uszkodzeń konkurujących
Języki publikacji
Abstrakty
Considering the degradation and catastrophic failure modes simultaneously, a general reliability analysis model was presented for the competing failure processes with unbalanced data. For the degradation process with highly unbalanced data, we developed a linear random-effects degradation model. The model parameters can be estimated based on a simple least square method. Furthermore, to fully utilize the degradation information, we considered the last measured times of the degradation units that had only one or two measured time points as zero-failure data or right-censored data of the catastrophic failure mode. Then the incomplete data set was composed of zero-failure data and catastrophic failure data. To analyze the incomplete data, the definition of the interval statistics was firstly given. The best linear unbiased parameter estimators of catastrophic failure were obtained based on the Gauss-Markov theorem. Then, the reliability function of the competing failure processes was given. The corresponding two-sided confidence intervals of the reliability were obtained based on a bootstrap procedure. Finally, a practical application case was examined by applying the proposed method and the results demonstrated its validity and reasonability.
W pracy przedstawiono ogólny model analizy niezawodności procesów związanych z powstawaniem uszkodzeń konkurujących, który pozwala na wykorzystanie danych niezbilansowanych oraz umożliwia jednoczesne uwzględnienie uszkodzeń wynikających z obniżenia charakterystyk i uszkodzeń katastroficznych. Opracowano liniowy model efektów losowych dla procesu degradacji o wysoce niezbilansowanych danych. Parametry tego modelu można określić na podstawie prostej metody najmniejszych kwadratów. Ponadto, aby w pełni wykorzystać informacje dotyczące obniżenia charakterystyk, dane pochodzące z ostatniego pomiaru jednostek podlegających degradacji, dla których przeprowadzono tylko jeden lub dwa pomiary, rozpatrywano jako dane o zerowym uszkodzeniu lub jako ucięte prawostronnie dane dotyczące uszkodzenia katastroficznego. W ten sposób otrzymano zbiór niepełnych danych składający się z danych o uszkodzeniach zerowych oraz danych o uszkodzeniach katastroficznych. Aby móc przeanalizować uzyskane niepełne dane, podano definicję statystyki przedziałowej. Najefektywniejszy nieobciążony estymator liniowy (BLUE) parametrów uszkodzeń katastroficznych uzyskano na podstawie twierdzenia Gaussa-Markowa. Następnie, podano wzór funkcji niezawodności procesów związanych z powstawaniem uszkodzeń konkurujących. Odpowiednie dwustronne przedziały ufności dla oszacowanej niezawodności uzyskano metodą bootstrapową. Na koniec, przedstawiono przypadek praktycznego zastosowania proponowanej metody, którego wyniki wykazały jej trafność i zasadność.
Czasopismo
Rocznik
Tom
Strony
98--109
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
- School of Aeronautic Science and Engineering New Main Building C-928, Beihang University 37 Xueyuan Street, Haidian District, Beijing 100191, China
autor
- School of Aeronautic Science and Engineering New Main Building C-928, Beihang University 37 Xueyuan Street, Haidian District, Beijing 100191, China
autor
- School of Aeronautic Science and Engineering New Main Building C-928, Beihang University 37 Xueyuan Street, Haidian District, Beijing 100191, China
autor
- School of Aeronautic Science and Engineering New Main Building C-928, Beihang University 37 Xueyuan Street, Haidian District, Beijing 100191, China
autor
- The State Key Lab of Mechanical Transmission Chongqing University 174 Shazheng Street, Shapingba District Chongqing 400030, China
Bibliografia
- 1. Amster S J. The statistical treatment of fatigue experiments. Technometrics 1965; 7: 455, http://dx.doi.org/10.1080/00401706.1965.10490284.
- 2. Bae S J, Kvam P H. A nonlinear random-coefficients model for degradation testing. Technometrics 2004; 46: 460-469, http://dx.doi.org/10.1198/004017004000000464.
- 3. Bae S J, Kuo W, Kvam P H. Degradation models and implied lifetime distributions. Reliab Eng Syst Safe 2007; 92: 601-608, http://dx.doi.org/10. 1016/j.ress.2006.02.002.
- 4. Balakrishnan N, Chan PS. Order statistics from extreme value distribution, I: Table of means, variances and covariances. Commun. Statist.-Simula 1992; 21(4): 1199-1217.
- 5. Bocchetti D, Giorgio M, Guida M, Pulcini G. A competing risk model for the reliability of cylinder liners in marine diesel engines. Reliab Eng Syst Safe 2009; 94: 1299-1307, http://dx.doi.org/10.1016/j.ress.2009.01.010.
- 6. Cha J H, Gui M, Pulcini G. A competing risks model with degradation phenomena and catastrophic failures. International Journal of Performability Engineering 2014; 10: 63.
- 7. Chen K, Li S, Li F. Reliability mathematics and its application. JiLin: Jilin education press, 1987.
- 8. David H A, Moeschberger M L. The theory of competing risks. London: Griffin Publishers, 1978.
- 9. Di Giacomo G. Reliability of electronic packages and semiconductor devices. New York: McGraw-Hill Publishers, 1997.
- 10. Efron B. Bootstrap confidence intervals for a class of parametric problems, Biometrika, 1985; 72, 45-58, http://dx.doi.org/10.1093/biomet/72.1.45.
- 11. Huang W. Reliability analysis considering product performance degradation. Tucson: University of Arizona; 2002.
- 12. Huang W, Askin R G. Reliability analysis of electronic devices with multiple competing failure modes involving performance aging degradation. Quality and Reliability Engineering International 2003; 19(3): 241-254, http://dx.doi.org/10.1002/qre.524.
- 13. Jiang L, Feng Q, Coit D W. Reliability and maintenance modeling for dependent competing failure processes with shifting failure thresholds. Reliability, IEEE Transactions on 2012; 61: 932-948, http://dx.doi.org/10.1109/TR.2012.2221016.
- 14. Kaplan E L, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53: 457-481, http://dx.doi.org/10.1080/01621459.1958.10501452.
- 15. Kececioglu D. Reliability engineering handbook. DEStech Publications Inc, 2002.
- 16. Lau J H. Solder joint reliability: theory and applications. Springer, 1991, http://dx.doi.org/10.1007/978-1-4615-3910-0.
- 17. Lawless JF. Statistical models and methods for lifetime data. John Wiley & Sons, 2011.
- 18. Li W, Pham H. Reliability modeling of multi-State degraded systems with multi-competing failures and random shocks. IEEE Trans 2005; 54(2): 297-303, http://dx.doi.org/10.1109/tr.2005.847278.
- 19. Lin Y. Parametric estimation in competing risks and multi-state models. University of Kentucky, 2011.
- 20. Lu C J, Meeker W Q. Using degradation measures to estimate a Time-to-Failure distribution. Technometrics 1993; 161-174. http://dx.doi.org/10.1080/00401706.1993.10485038
- 21. Lu C J, Meeker W Q, Escobar L A. A comparison of degradation and failure-time analysis methods for estimating a time-to-failure distribution.Stat Sinica 1996; 6: 531-546.
- 22. Misra K B. Reliability analysis and prediction: A methodology oriented treatment. Elsevier, 1992.
- 23. Nelson W B. Accelerated testing: Statistical models, test plans, and data analysis. John Wiley & Sons, 2009.
- 24. Rao C R. Linear statistical inference and its applications. John Wiley & Sons, 2009.
- 25. Song S, Coit D W, Feng Q, Peng H. Reliability analysis for multi-component systems subject to multiple dependent competing failure processes. Reliability, IEEE Transactions on 2014; 63: 331-345, http://dx.doi.org/10.1109/TR.2014.2299693.
- 26. Sulzer. Service instructions for diesel engine G.M.-Sulzer RT58-Type: 8 RTA 58. Sulzer; 1986.
- 27. Swamy P. Statistical inference in random coefficient regression models. Berlin: Springer, 1971, http://dx.doi.org/10.1007/978-3-642-80653-7.
- 28. Tang D, Yu J. Optimal replacement policy for a periodically inspected system subject to the competing soft and sudden failures. Eksploatacjai Niezawodnosc - Maintenance and Reliability, 2015, 17(2): 228-235, http://dx.doi.org/10.17531/ein.2015.2.9.
- 29. Tseng S T, Tang J, Ku I H. Determination of burn in parameters and residual life for highly reliable products. Naval Research Logistics (NRL) 2003; 50: 1-14, http://dx.doi.org/10.1002/nav.10042.
- 30. Wang H, Gao J. A reliability evaluation study based on competing failures for aircraft engines. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 2014; 16 (2): 171-178.
- 31. Whitmore G A, Schenkelberg F. Modelling accelerated degradation data using Wiener diffusion with a time scale transformation. Lifetime Data Analysis 1997; 3: 27-45, http://dx.doi.org/10.1023/A:1009664101413.
- 32. Wu S J, Huang S R. Planning progressive Type-I interval censoring life tests with competing risks. Reliability, IEEE Transactions on 2014; 63: 511-522, http://dx.doi.org/10.1109/TR.2014.2313708.
- 33. Yuan X, Pandey M D. A nonlinear mixed-effects model for degradation data obtained from in-service inspections. Reliability Engineering & System Safety, 2009, 94(2): 509-519, http://dx.doi.org/10.1016/j.ress.2008.06.013.
- 34. Zhao W, Elsayed E A. An accelerated life testing model involving performance degradation. Reliability and Maintainability Annual Symposium-RAMS IEEE, 2004.
- 35. Zhou R R, Serban N, Gebraeel N. Degradation modeling applied to residual lifetime prediction using functional data analysis. The Annals of Applied Statistics 2011; 1586-1610, http://dx.doi.org/10.1214/10-AOAS448.
- 36. Zhuang D, Mao S. Statistical analysis of degradation data. Beijing: China Statistics Press, 2013.
- 37. Zuo M J, Jiang R, Yam R. Approaches for reliability modeling of continuous-state devices. Reliability, IEEE Transactions on, 1999; 48(1): 9-18, http://dx.doi.org/10.1109/24.765922.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c69d60cc-ad7f-418c-9690-4a08723643f1