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1. Introduction

Competing failure involving performance degradation and cata-
strophic failure can be found in many products [8, 22]. During the 
working span, if any one of the failure modes occurs first, the prod-
uct fails. The performance degradation failure, which is also termed 
soft failure, is due to aging degradation which makes the performance 
value reach an unacceptable level. Compared with the degradation 
failure, the catastrophic failure is more severe because the product 
may not function once it occurs [15]. For example, a semiconductor 
device’s failure may be due to electrical malfunctions or mechani-
cal fatigue of I/O connectors (e.g., solder joints, etc.). The failure of 
the insulation system of a DC motor can be attributed to turn failure, 
phase failure, or ground failure. Failures of ball bearing assemblies 
are attributed to either race or ball failures [23]. Competing failure is 

an important failure concept for products, so it is significant to study 
the reliability of products with competing failure modes.

Reliability analysis for products that experience only degradation 
has been extensively studied in the literature. Lu et al. [20] presented 
a general mixed-effects path model and used a two-stage approach 
to estimate the parameters of normally distribution. Subsequently, 
Lu and Meeker [21] used a simple degradation model to compare 
degradation analysis and traditional failure-time analysis in terms of 
asymptotic efficiency, and the results showed that degradation analysis 
provided more precision estimations. Bae and Kvam [2] developed 
a nonlinear random-effect model to describe the degradation of 
vacuum fluorescent displays. Furthermore, Bae et al. [3] investigated 
the link between a choosing mixed-effects model and the resulting 
lifetime model and pointed out that the degradation implied the 
lifetime distribution. In addition, stochastic process formulations have 
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W pracy przedstawiono ogólny model analizy niezawodności procesów związanych z powstawaniem uszkodzeń konkurujących, 
który pozwala na wykorzystanie danych niezbilansowanych oraz umożliwia jednoczesne uwzględnienie uszkodzeń wynikających 
z obniżenia charakterystyk i uszkodzeń katastroficznych. Opracowano liniowy model efektów losowych dla procesu degra-
dacji o wysoce niezbilansowanych danych. Parametry tego modelu można określić na podstawie prostej metody najmniejszych 
kwadratów. Ponadto, aby w pełni wykorzystać informacje dotyczące obniżenia charakterystyk, dane pochodzące z ostatniego 
pomiaru jednostek podlegających degradacji, dla których przeprowadzono tylko jeden lub dwa pomiary, rozpatrywano jako dane 
o zerowym uszkodzeniu lub jako ucięte prawostronnie dane dotyczące uszkodzenia katastroficznego. W ten sposób otrzymano 
zbiór niepełnych danych składający się z danych o uszkodzeniach zerowych oraz danych o uszkodzeniach katastroficznych. Aby 
móc przeanalizować uzyskane niepełne dane, podano definicję statystyki przedziałowej. Najefektywniejszy nieobciążony estyma-
tor liniowy (BLUE) parametrów uszkodzeń katastroficznych uzyskano na podstawie twierdzenia Gaussa-Markowa. Następnie, 
podano wzór funkcji niezawodności procesów związanych z powstawaniem uszkodzeń konkurujących. Odpowiednie dwustronne 
przedziały ufności dla oszacowanej niezawodności uzyskano metodą bootstrapową. Na koniec, przedstawiono przypadek prakty-
cznego zastosowania proponowanej metody, którego wyniki wykazały jej trafność i zasadność.

Słowa kluczowe: ocena niezawodności, model uszkodzeń konkurujących, dane niezbilansowane, statystyki prze-
działowe.
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nonparametric degradation modeling framework for making inference 
on the evolution of degradation signals that are observed sparsely or 
over short time intervals. Rao [24] and Swamy [27] have analyzed the 
linear random-effects regression model and given the parameter esti-
mation approaches. Zhuang et al. [36] proposed a linear mixed-effects 
model and estimated the parameters with the repeated measurements 
data and the unbalanced data respectively. Yuan et al. [33] presents an 
advanced nonlinear mixed-effects model for modeling and predicting 
degradation in nuclear piping system. The model offers considerable 
improvement by reducing the variance associated with degradation of 
a specific unit, which leads to more realistic estimates of risk. It has 
been widely believed that the regression method is the most conven-
ient and important tool for analyzing the unbalanced data of perform-
ance degradation.

Furthermore, some degradation units may only be inspected at one 
or two time point, such as unit 2 and unit 3 in Fig.1. These degradation 
units make the analysis more challenging due to the sparse measured 
data. And this degradation data may be abandoned due to being un-
able to fit the degradation path. Therefore, in order to fully utilize the 
degradation information, we consider the last observation time points 

of these degradation units, such as 1
ot  and 2

ot  shown in Fig.1, as the 
zero-failure data or right-censored data of the catastrophic failure 
mode. Then, the incomplete data consists of the zero-failure data 
from the degradation units and the failure data from the catastrophic 
failure, as shown in Fig.2. Kaplan et al. [14] proposed Kaplan-Meier 
estimation method to analyze the reliability for the incomplete 
data. Amster [1] developed an average rank method to estimate the 
parameters of the life distribution. Lawless [17] used the maximum 
likelihood method to analyze the incomplete data. Lin [19] used the 
Expectation Maximization algorithm to compute the non-parametric 
maximum likelihood estimation. In this paper, we define the interval 
statistic and propose a non-parametric estimation method to analyze 
the incomplete data, and then the best linear unbiased estimates of the 
distribution parameters can be obtained. In addition, to the best of our 

attracted considerable attention from researchers in the degradation 
analysis, such as Markov chain, Wiener process and Gamma proc-
ess, etc. Among them, Wiener process is one of the most prominent 
degradation models and has been studied rather extensively. Tseng et 
al. [29] used a Wiener process to describe the degradation o f the light 
intensity of LED lamps. Whitmore and Schenkelberg [31] presented a 
time-scale transformation Wiener process to analyze the reliability of 
self-regulating heating cables, and so on.

A variety of reliability models for competing failure modes have 
been developed. Zuo et al. [37] presented a mixture model which can 
be used to model both catastrophic failures and degradation failures. 
This mixture model also shows engineers how to design experiments 
to collect both hard failure data and soft failure data. Huang et al. 
[11, 12] developed an extension of reliability analysis of electronic 
devices with multiple competing failure modes and derived the prob-
ability of a product with a specific failure mode, then predicted the 
probability of the dominant failure mode on the product. Li et al. [18] 
proposed a reliability evaluation model of multi-state degraded sys-
tems subject to multiple competing failure processes and assumed 
that these processes were independent. Jiang et al. [13] presented a 
reliability and maintenance model for systems subject to competing 
failure processes, which included a soft failure caused by continuous 
degradation due to a shock process and a hard failure caused by the 
instantaneous stress. Song et al. [25] developed a multi-component 
system reliability model for the complex multi-component systems, 
which would experience multiple competing failure processes of each 
component due to simultaneous exposure to degradation and shock 
loads. Wang et al. [30] established a competing failure model for aircraft 
engines based on the data fusion method. Wu et al. [32] investigated 
the reliability and quality problems when the competing risks data 
are progressive type-I interval censored with binomial removals. Tang 
et al. [28] studied a replacement problem for a continuously system 
subject to the competing risk of soft and sudden failures.

Before statistical analysis, the competing failures are usually 
assumed that the failure modes are independent or dependent. 
Recently, reliability modeling for products with multiple independent 
competing failure modes has been investigated by several researchers. 
Huang et al. [12] presented an extended method of reliability analysis 
for an electronic device, which has two failure modes—solder/
Cu pad interface fracture (a catastrophic failure) and light intensity 
degradation (a degradation failure). They assumed that the two 
failure modes were mutually independent due to the failure modes 
caused by different stresses. Recently, Cha et al. [6] used an improved 
method to analyze the reliability of this electronic device and the 
competing failure modes also were considered independent. Li et al. 
[18] developed models for evaluating the reliability of multi-state 
degraded systems with multiple competing failure modes, which 
were assumed independent. Applications of such systems can also 
be found in the Space Shuttle computer complex, electric generator 
power systems, and so on. Bocchetti et al. [5] proposed a competing 
risk model to access the reliability of the cylinder liners of a marine 
Diesel engine, and the two failure modes (wear and thermal crack) 
of cylinder liners were considered independent. Furthermore, in the 
practical engineering, the competing failure modes that each may 
have a different root cause can be considered independent. For ex-
ample [9, 16], a semiconductor device failure may be due to electri-
cal malfunctions or mechanical fatigue of I/O connectors (e.g., solder 
joints, etc.). Therefore, we assume that the competing failure modes 
are independent of each other in this paper.

In practice, the observed degradation data are often highly unbal-
anced. Here unbalanced means that the number and time of meas-
urements are not identical for degradation units in a given popula-
tion of products. Due to the unbalanced nature, the degradation data 
cannot be rationally analyzed by using the traditional models. Many 
researchers have studied this problem. Zhou et al. [35] presented a 

Fig. 1. Zero-failure data from degradation units

Fig. 2. Incomplete data
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knowledge, most of the studies in the competing failure analysis have 
not considered the two-sided confidence intervals of the reliability, 
which is an important index in the reliability evaluation, such as Zuo 
et al. [37], Li et al. [18], and Bocchetti et al. [5], etc. To remedy this 
deficiency, we develop a bootstrap (simulation) procedure to derive 
the two-sided confidence intervals for the reliability of the competing 
failure.

In this paper, we propose a generalized reliability analysis model 
for the competing failure mode under the hypotheses that i) the prod-
uct fails when a first of the competing failure mechanisms reaches a 
failure state; ii) each failure mode has a known life distribution model; 
iii) the competing between degradation failure and catastrophic failure 
results in products failure. A linear random-effect model is presented 
for analyzing the highly unbalanced measurement data from perform-
ance degradation failure, and a least square method for parameter es-
timation has been developed in the situation where the degradation 
and catastrophic failures are independent. For the catastrophic failure 
mode, the concept of interval statistics is introduced, by combining 
the catastrophic failure data and the last measured time points of the 
degradation units that have one or two measured time points, a relia-
bility model based on Weibull distribution is proposed. Moreover, the 
two-sided confidence intervals of the reliability for competing failure 
mode are given based on the bootstrap method.

The rest of this paper is organized as follows. Section 2 introduces 
the reliability models for the performance degradation model, cata-
strophic failure model and competing failure model. Section 3 and 
Section 4 present the estimation theory of the parameters of perform-
ance degradation model and catastrophic failure model, respectively. 
Section 5 gives the steps for reliability confidence interval estimation 
of competing failure mode. Section 6 contains an engineering exam-
ple to demonstrate the proposed method. Section 7 includes the sum-
mary and conclusions. 

2. Model assumptions

2.1. The performance degradation model

For product performance degradation, it can be considered as fail-
ure when the degradation reaches to the failure level fD . Among 

several existing modeling approaches, a widely used one is the linear 
random-effect model. Its modeling procedure is as follows.

Assuming 1. n  units are put into test, qn units occur catastroph-

ic failure and m units occur performance degradation failure, 

where qn m n+ = . For each degradation unit, the measured 

times are random. For example, the performance of unit i  is 

measured at *
in  times

 *1 2
i

i i in
t t t< < <  with corresponding 

measurements *1 2, , ,
i

i i i n
z z z , 1,2, ,i m=   (see Table.1). In 

Table 1, δ = 0 means that the performance degradation occurs 
only, δ =1means that the catastrophic failure occurs only.
Based on the properties of the linear random-effect degrada-2. 
tion model, we have:

 z t i m j nij i i ij ij i= + + = =β β ε1 2 1 2 1 2, , ; , , *
   (1)

For convenient calculation, let:
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Thus the linear random-effect degradation model can be expressed by:
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. ρ  denotes the correlation of βi1  and βi2 . 

ββi  is the random-effect parameter vector of the i th unit. εεi  denotes 

the measurement error. The ββi  and εij are assumed to be mutually 
independent of each other.

Let 3) ΘΘ == b b1 2 1
2

2
2 2, , , , ,σ σ ρ σ( )  denote the vector of the 

unknown parameters. Then, a simple least square method can 
be developed to estimate the unknown parameters Θ  in the 
proposed degradation model. 

Let 4) D t ti i( ) = +β β1 2  denote the actual degradation path for 

unit i . Then, ( )~D t  N b b t t t1 2 1
2

1 2 2
2 22+ + +( ),σ ρσ σ σ . 

Without loss of generality, we assume that the degradation 
measurements increase over time. Thus, the distribution of 
time-to-failure T  can be defined as:
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Table 1. Product competing failure data

Test units

1 2 3 4 5   n

11t 11z 3t 31t 31z 4t 51t 51z   1nt 1nz

12t 12z 32t 32z   2nt 2nz

13t 13z  

 

    1( 1)n nt − 1( 1)n nz −

11nt
11nz

 

δ = 0 δ =1 δ = 0 δ =1 δ = 0   δ = 0
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Finally, the reliability function at a given time 5) t  can be defined 
as:

  R t
t D b b

t t b
d

f( ) = −
− −( )

+ +( )

















1
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1 2

1
2

1 2 2
2 2

2
2
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2.2. The catastrophic failure model

For the degradation unit that only has one or two measurement 
time point and the catastrophic failure does not occur, the last meas-

ured time points can be regarded as zero-failure data, such as  32t  and 

51t  in Table 1. Then, the incomplete catastrophic failure data consists 
of zero-failure data and catastrophic failure data. This is true. First, 
it is assumed that the competing failure modes are independent due 
to different root causes. Second, the catastrophic failure has not oc-
curred until the last test time point for an individual degradation unit. 
Moreover, the corresponding performance degradation value is far 
enough from the predefined failure level.

For qn
 
units of the catastrophic failures, the corresponding failure 

times are 1 2 qnt t t≤ ≤ ≤ . Let 1 2 p
o o o

nt t t≤ ≤ ≤  denote the zero-

failure data set. So the incomplete data set can be defined as 

1 1, , , , , , ,
p q

o o
i n nt t t t t< < < < < <    .

We assume that the catastrophic failure time follows a Weibull distri-
bution. Thus, the probability distribution function can be defined as:

 F t t
TC ( ) = − −
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And the reliability function of the catastrophic failure can be 
represented by:
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2.3. The competing failure model

The reliability analysis presented in this paper is based on the as-
sumption that the degradation failure mode and the catastrophic fail-
ure mode are independent of each other. Thus the reliability function 
of the competing failure for an operating time t  is expressed as:

{ }{ } ( ) ( )( ) min , ( ) ( )TC d TC d TC dR t P t t t P t t P t t R t R t= > = > ⋅ > =   (7)

where TCt  and dt  denote the catastrophic time-to-failure and degra-
dation time-to-failure, respectively.

3. Parameter estimation of performance degradation 
model

In this section, we discuss a simple least square method for 
estimating the unknown parameters in degradation model. First, let

 e bi i i i= −( ) +X ββ εε  (8)

Therefore, the linear model of performance degradation can be 
rewritten as:
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where *
in

I  is an identity matrix.

Based on the least square theory, the sum of squared error of per-
formance degradation model can be expressed as:
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So the unbiased estimation of the random coefficient’s mean is:
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An estimator of the error variance σ i
2

 for degradation unit i  is 
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where p  is the dimension of βi .
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It can be proved that the unbiased estimation of error variance 

σ 2
 is:
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In [36], the author discussed the unbiased estimation of variance-
covariance matrix ∑   for the linear mixed-effect model. So we derive 
the unbiased estimation of the random coefficient’s variance-covari-
ance matrix based on [36].
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4. Parameter estimation of catastrophic model

4.1. Definition of interval statistics

Definition 1. Suppose 1 2 NX X X< < <  are order statistics, where 

iX  illustrates a distribution function ( )F x
 
and a density function 

( )f x . Then, o
iX  is defined as the i th interval statistics, if o

iX  satis-

fies:

 1 0,1,2, ,o
i i iX X X i N+< < =   (18)

where 0 1, NX X += −∞ = +∞ .

Theorem 1. For the interval statistics 1 2
o o o

NX X X< < < , the prob-

ability density function of o
iX  is:
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where 0,1,2, , 1i N= − , 0,1,2, ,j N=   and i j< .

Theorem 3. For the statistics 1 1 2 2
o o o

N NX X X X X X< < < < < < , 

the joint probability density function of the i th interval statistics o
iX  

and the j th order statistics jX
 
is:
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if i j< , and 0,1,2, , 1; 0,1,2, ,i N j N= − =  , or as:
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if i j≥ , and , 0,1,2, ,i j N=  .The proof of Theorem 1-3 are detailed 
in Appendix A.

4.2. Parameter estimation of catastrophic failure model

According to the above discussions, the incomplete data t
 
fol-

lows a Weibull distribution. Let * lnt t= , '
p qn n n+ = , σ

α
=

1  and 

µ η= ln , so *t follows the Extreme value distribution:

 F t t*
*

exp exp( ) = − −
−




















1 µ

σ
 (23)

The transformed catastrophic failure times * * *
1 2, ,

qnt t t≤ ≤  can 

be considered as the realizations of the order statistics 

1 2, ,
qnX X X≤ ≤  
, and the transformed zero-failure times 

** *
1 2 , ,

p
o o o

nt t t≤ ≤  from degradation units can be regarded as the re-

alizations of the interval statistics 1 2 , ,
p

o o o
nX X X≤ ≤ .

Letting t t' *= −( )µ σ
 
, the transformed time 't  follows the 

standard Extreme value distribution

 
F t t' 'exp exp( ) = − − ( ){ }1  (24)

For clarity, let '
it  

denote the i th transformed catastrophic 

failure time, and 'o
jt

 
denote the j th

 
transformed zero-failure time 

for degradation unit, ', 1,2, ,i j n=  . Thus, the incomplete data 

set 1 1, , , , , , ,
p q

o o
i n nt t t t t< < < < < <     can be transformed as 

' ' ' ' ' '
1 2 3 1 1, ,

p p p
o o

n n nt t t t t t− +≤ < < < <  '
', ,
n

t< .

The transformed catastrophic failure time '
jt
 
can be considered 

as the realization of the ( )j i− th order statistic, if there are i
 
trans-

formed zero-failure times before '
jt ,

 
i j<  . Similarly, the transformed 

zero-failure time 'o
it  

can be considered as the realization of the j th 
interval statistic, when there are j

 
transformed catastrophic failure 

times before 'o
it ,

 
i j> . 

For convenient calculation, we use *t
 
and 't

 
to represent *ot  and 

'o
it , respectively.  According to t t' *= −( )µ σ , we know
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where

 µi i i i iE t t g t dt= ( ) = ( )−∞
+∞
∫' ' ' '  (26)

if '
it  denotes the interval statistic; i.e., ' 'o

i it t= . Otherwise,  µi  can be 

calculated based on the method proposed in [4] if '
it  denotes the order 

statistic. ijν  can be obtained by:

 
ν ij i j i j i jCov t t E t t E t E t= ( ) = ( ) − ( ) ( )' ' ' ' ' ',

    = ( ) −
−∞
+∞

−∞
+∞
∫∫ t t g t t dt dti j i j i j i j

' ' ' ' ' ', µ µ  (27)
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and ijν  can be calculated based on Equation (19), (25), and (26), if  

both '
it  and '

jt  are interval statistics. Otherwise, ijν  can be calculated 

based on Equation (20) or (21), (25), and (26), if either '
it  or '

jt  

is interval statistic. In addition, ijν  can be estimated based on the 

method proposed in [4], when both '
it  and '

jt  are order statistics.

Thus, the residual sum of squares Q  can be obtained

  Q t ti i
i j

n n

ij j j

q p
= − −( ) − −( )

=

+
−∑ *

,

*µ σµ ν µ σµ
1

1  (28)

Let ∂
∂

=
∂
∂

=
Q Q
µ σ

0 , so the best linear unbiased of the parameters µ  

and σ  of Extreme value distribution can be estimated by the 
Gauss-Markov theorem.
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 ν νij ij n n n nq p q p

−
+( )× +( )

−
=  

1 1
 (32)

Then, the parameters α  and η  of Weibull distribution can be 
estimated by:

 
α

σ

η µ





 

=

= ( )









1

exp
 (33)

5. Estimation of confidence intervals for R(t)

Based on the methods given in Sections 3 and 4, we can obtain the 

estimates of the competing failure model parameters b , ∑ , σ 2 , α  ,

η . The reliability R(t)  of competing failure can be calculated by 

substituting the estimates into R(t;b   , , , , )∑ α η Df ; that is, point esti-

mation R(t) = R(t;b   , , , , )∑ α η Df . There are many methods to con-

struct confidence intervals for a point on a distribution function. 

One should note that it is nearly impossible to estimate the stand-

ard error of R(t)  directly, and we cannot select an appropriate distri-
bution for the reliability function. Therefore it is a difficult problem 

to construct confidence intervals for R(t) . The bootstrap method is 
often used to construct confidence intervals or assess standard errors 
when there is no appropriate approach that is both tractable and suf-
ficiently accurate. Accordingly, we develop the following bootstrap 

procedure to construct pointwise confidence intervals for R(t) .
Estimate the degradation model parameters1. b , ∑ , and the 
catastrophic model parametersα ,η  by using the method in 

Section 3 and 4 respectively, giving b , ∑ , σ
2

,α ,η .
The Weibull distribution is transformed into 2. 

 
t U= − −( ) η α

ln 1
1

 where ( )0,1U U .

Generate 3. pm n−  simulated realizations 
 ββi i i= ( )β β1 2,

'
 

1,2, , pi m n= −  from  ( ),N ∑b  and qn  simulated realiza-

tions jt  1,2, , qj n=   of catastrophic failure time from
 
Eq.

(34). Then the incomplete data consist of qn  simulated reali-

zations jt and pn zero-failure data from degradation units.

Compute 4. pm n−
 

simulated degradation paths from 

z tij i i ij ij   = + +β β ε1 2 , where ε ij  are pseudo measuring er-

rors generated from N 0
2

,σ





  

and ijt
 
are the same measure-

ment times used in the original test.

Use the 5. pm n−
 
simulated degradation paths and the incom-

plete data to estimate parameters of the competing model, giv-

ing the bootstrap estimates b , Σ , α , η .

Generate 6. BN  simulated realizations ββ 







i i i= ( )β β1 2,
'
from 

N b ,Σ( ) and compute the corresponding degradation failure 

times t D f i i
 





= −( )β β1 2 .

Compute the estimate 7. 

R (t)d from the simulated empirical dis-

tribution:

 


R (t)d = number of Bt t N>  (35)

Compute the estimate 8. 

R (t)TC  by substituting α , η  into 
Eq.(6)

Compute the estimate 9. 

R(t) of the competing reliability by sub-

stituting the bootstrap estimates R (t)d , R (t)TC  into Eq. (7) for 
any desired value t .
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Do step 2-9 B times to obtain the bootstrap estimates 10. 



1R(t) , 





2R(t) , , R(t)B .

Sort the estimates 11. 



1R(t) ,  2R(t) , , R(t)B in increasing order 

for each desired time t  to give  [1]R(t) ,  [2]R(t) , ,  [ ]R(t) B .

Following [10], determine the lower and upper bounds of 12. 

pointwise 1 α−  confidence intervals for R(t) as








[ ] [ ]R(t) ,R(t)l u
 
  

, where ( ) ( )1 12 2l B q α− − = Φ Φ +Φ  , 

u =  ( ) ( )1 12 1 2B q α− − Φ Φ +Φ −  , and Φ  is the standard 

normal distribution function, q =number of  R(t) R(t)b ≤ / B ,

1,2, ,b B=  .

6. Case study

The reliability evaluation method presented in this paper for prod-
ucts with competing failure can be illustrated by an engineering exam-
ple based on a well-known data set given in [26]. The data (Table 2) 
contains information about 33 cylinder liners of 8 cylinder SULZER 
RTA58 engines which were tested. A liner’s failure is the competing 
result of wear failure and thermal crack failure. The wear failure mode 
can be treated as a performance degradation process and the thermal 
crack failure mode can be treated as a catastrophic failure. In this pa-
per, we assume the two failure modes are independent. In Table 2, δ=1 
and δ=0 represent the catastrophic failure and performance degrada-

Table 2. Performance degradation and catastrophic failure data of cylinder liners

unit/ i ijt (h) / ijz  (mm) unit/ i ijt (h) / ijz  (mm)

1
δ=1 36370h 18

δ=1 16870h

2
δ=1 28930h 19

δ=1 11600h

3
δ=1 27970h 20

δ=1 14300h

4
δ=1 21830h 21

δ=1 14596h

5
δ=0

14810 18700 28000 22
δ=1 31900h

1.90 2.25 2.75

6
δ=1 39500h 23

δ=1 25300h

7
δ=0 

10000 30450 37310 24
δ=0 

12100

1.20 2.75 3.05 1.00

8
δ=1 25200h 25

δ=0 
12000 27300 49500 56120

1.95 2.70 3.15 4.05

9
δ=1 27750h 26

δ=0 
8800

1.40

10
δ=1 25680h 27

δ=1 16738h

11
δ=1 29900h 28

δ=0
33000 38500 55460

2.90 3.25 4.10

12
δ=0 

18320 25310 37310 45000 29
δ=1 28100h

2.20 3.00 3.70 3.95

13
δ=0 

10000 16620 30000 30
δ=0 

8250

2.1 2.75 3.60 0.70

14
δ=0 

9350 15970 31
δ=1 31330h

0.85 1.20

15
δ=1 18270h 32

δ=1 5430h

16
δ=1 18650h 33

δ=1 16790h

17
δ=0 

7700

1.60
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tion failure, respectively. The measured time points and time intervals 
of degradation units are listed in Table 2.

6.1. Reliability of the performance degradation failure mode

From Table 2, we observe that the data from 11 units ( i = 5, 7, 12, 
13, 14, 17, 24, 25, 26, 28 and 30) can be considered as the degradation 
failure mode. The cylinder liner is defined to have failed, if the wear 
exceeds a degradation threshold value fD  =4 mm. However, it 

is obvious that the 14th, 17th, 24th, 26th and 30th degradation 
units only have one or two performance degradation 
measurement. Then we can consider the last measured times of 
these degradation units as the zero-failure data or right-censored 
data of the catastrophic failure mode. Therefore, the degrada-
tion data consist of the remaining 6 units ( i = 5, 7, 12, 13, 25, 
and 28).

To test the normality assumption, we give the quantile-
quantile (Q-Q) plot for the degradation data, as shown in Fig. 
3, which shows that the plot of the quantiles of degradation 
data versus theoretical quantiles from a normal distribution is 
close to linear. In addition, we perform the Shapiro-Wilk (S-W) 
goodness-of-fit tests. The S-W test also verifies the normality 
assumption of the random-effects model for the degradation 
data with p-values of 0. 73.

For each degradation unit, the estimates of the degradation 

parameters β i1  and β i2  can be obtained based on the least 

square method given in Section 3. Then we use these estimated results 
to test the assumptions required for the degradation model. For the 

random-effects degradation model, we assume that β σi N b1 1 1
2

 ,( )  

and β σi N b2 2 2
2

 ,( ) . In order to demonstrate the normality, we first 

give the P-P plots of β i1  and β i2 , as shown in Fig. 4 and Fig. 5. 

The sample points will be approximately linear if they are 
normal. From Fig. 4 and Fig. 5, it can be observed that both the 
estimated values of β i1  and β i2  perform quite well. To further 

test the normality of the degradation model parameters, the S-W 
goodness-of-fit tests are performed. For the random-effects 
model, the S-W test failed to reject the null hypothesis that β i1 

and β i2 are normally distributed with p-values of 0.57 and 0.29, 

respectively.
Then, we apply the proposed random-effects degradation 

model to fit the data. Based on the simple least square method 
mentioned in Section 3, the parameters in the degradation model 
can be estimated as:

 1 1.43b = , 2 0.48b = , σ1
2

0 35= . , σ 2
2

0 05= . , ρ = −0 77. , σ
2

0 03= .
To demonstrate the goodness of fit, the estimated mean deg-

radation path is used to compare with the degradation sample. 
The results are depicted in Fig. 6, which shows the goodness-of-
fit of the degradation model.

For further illustration, the 100 p th percentile of perform-
ance degradation at a given time t  can be expressed as:

 ( ) ( ) ( )1 ( )pz t t p tφ ϕ−= + Φ  (36)

where ( )Φ ⋅  is the distribution function of the standard normal 
distribution,

    
( ) ( )

( )
1 2

2 2 2 2
1 1 2 2( ) 2

t E z b b t

t Var z t t

φ

ϕ σ ρσ σ σ σ

 = = +


= = + + +
 (37)

Fig. 3. Q-Q plot of the degradation data

Fig. 5. P-P plot of the model parameter β i2

Fig. 4. P-P plot of the model parameter β i1
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Then, the 10th percentile curve ( )0.1z t  of performance 
degradation is given, as shown in Fig. 7. From the concept of percen-
tiles, ( )0.1z t  means an average of 90% of the population of the wear 

of cylinder liners ( )z t  will be smaller than 
( )0.1z t . From Fig. 7, it can be observed that most 

wear data is under the 10th percentile curve 
obtained from the proposed model. The standard 
residuals plot over time is further given in Fig. 8, 
which shows that the proposed degradation model 
is appropriate to describe the degradation data.

Thus, we can obtain the reliability function 
 ( )dR t  of the performance degradation failure by 

substituting the estimated parameters into 
Eq. (4).

6.2. Reliability of the catastrophic failure 
mode

The incomplete data set consists of 22 cata-
strophic failure units and 5( i = 14, 17, 24, 26, 30) 
performance degradation units. According to the 
lifetime of the two failure mode, the incomplete 
data is listed in Table 3. The last measured time 
points of the 30th , 26th  and 17th  degradation 

units can be considered as the values of the 1st, 9th and 13th 
interval statistics, and the last measured time points of the 24th 
and 14th degradation units both can be considered as the values 
of the 10th interval statistic.

Assuming the catastrophic failure times follow a Weibull 
distribution, this assumption can be justified based on theoreti-
cal considerations that fatigue life data is often shown to be 
adequately analyzed using the Weibull distribution and is sup-
ported by a graphical analysis. In particular, the graphical analy-
sis is performed by plotting on Weibull paper as Fig.9. Fig.9 
shows that the points roughly follow a straight line and gives no 
obvious evidence that the catastrophic failure data do not fit a 
Weibull distribution.

The calculated catastrophic failure model parameters of in-
complete data are listed in Table 4. In comparison with the 
conventional approach, the estimates of Weibull distribution pa-
rameters have significantly increased. The estimated shape pa-
rameter α  increases from 3.1914 to 10.4123, and the reason is 
that the current incomplete data estimation theory combines the 
catastrophic failure data with the last test time points of the deg-
radation units that only have one or two inspection time points 
so that the sample size is enlarged, which means that the 
population properties can be depicted more properly. Meanwhile, 
with the increasing of life information content, the estimated 

scale parameter η  also increases. In addition, the MTTF t  is 
improved twice due to full use of the test information.

According to the results listed in Table 4, the reliability of 
the catastrophic failure at given time t  can be obtained as:

Fig. 6. Estimated mean degradation path

Fig. 7. 10th percentile curve of wear data

Table 3. Incomplete data consisting of catastrophic failures and degradation data

Order 
number k Lifetime kt /h Unit i δi Order number k Lifetime kt /h Unit i δi

1 5430 32 1 15 25200 8 1

2 8250 30 0 16 25300 23 1

3 11600 19 1 17 25680 10 1

4 14300 20 1 18 26770 17 0

5 14596 21 1 19 27750 9 1

6 16738 27 1 20 27970 3 1

7 16790 33 1 21 28100 29 1

8 16870 18 1 22 28930 2 1

9 18270 15 1 23 29900 11 1

10 18650 16 1 24 31330 31 1

11 20950 26 0 25 31900 22 1

12 21830 4 1 26 36370 1 1

13 23720 24 0 27 39500 6 1

14 25100 14 0

Table 4. Comparison between the estimated results from traditional 
method and this paper

The parameters of 
Weibull distribution

Estimated by tradi-
tional method[7]

Estimated by the 
method in this paper

The shape parameter 3.19 10.41

The scale parameter 19322.12 32602.90

Mean time to failure 17302.96 31070.57
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6.3. Reliability of the competing failure

Following Eq. (7), we can obtain the estimates of the reliability 

R(t) ,  ( )dR t  and  ( )TCR t  by substituting the estimates b , ∑  andα , 

η . Fig.10 depicts the product’s reliability R(t)  under the competing 

failure model together with the reliability  ( )dR t  and  ( )TCR t  versus 
t  respectively. It can be observed that the catastrophic failure of cyl-
inder liner is the dominant failure mode. After operating the first 
12000h, the reliability of the catastrophic failure mode begins to sig-
nificantly decrease. This result can be explained by the fact that the 
probability that the thermal crack occurs will be enlarged with the 
increase of the wear loss.

Following Section 5, we obtain the competing failure model es-
timate of R(t)  with pointwise two-sided 90% and 80% confidence 
intervals as shown in Fig.11. The confidence intervals are obtained by 

the bootstrap simulation with B=5000 and BN =10000.

7. Conclusions

The conclusions drawn from this research are as follows:
Considering degradation and catastrophic failures, a general 1. 
reliability analysis model for the competing failure mode has 
been presented.
Unlike the previous studies assuming that the degradation 2. 
data are repeated measurements, this paper presents a linear 
random-effect model for the highly unbalanced measurement 
data, and has developed a least square method for parameter 
estimation in the situation where the degradation and cata-
strophic failures are independent.
For the catastrophic failure mode, we propose a reliability 3. 
model based on Weibull distribution. By combining the cata-
strophic failure data and the last measured time points of the 
degradation units that have only one or two measured time 
points, we obtain the estimates of the catastrophic failure 
model based on interval statistics theory. This method makes 
full use of the test information and improves the accuracy of 
estimation.
Based on the bootstrap method, we obtain the two-sided con-4. 
fidence intervals of the competing failure model for reliability 
assessment.

Fig. 10. Reliability of the competing failure, performance degradation and 
catastrophic failure

Fig. 8. Residual plot

Fig. 11. Reliability estimate of the competing model with two-sided 90% and 80% 
confidence intervals

Fig. 9. Graphical analysis of incomplete data on the Weibull plot
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A practical application case was examined by applying the 5. 
proposed methods to analyzing the competing failure data of 
cylinder liners. The results show that the degradation and cata-
strophic failure models presented in this paper are feasible and 
reasonable in practical applications.

However, the performance degradation failure and the catastrophic 
failure in some products are dependent of each other. In addition, more 
than two failure modes have been found in some products. Therefore, 
future study would also focus on the competing failure model of prod-
uct which takes more than two dependent failure modes.

Appendix A

Proof of Theorem 1:

For N  order statistics 1 2 NX X X< < < ,  the distribution function and density function of iX  are ( )F x
 
and ( )f x , respectively. And 

the corresponding interval statistics are 1 2
o o o

NX X X< < < , which also can be represented by 0 1 1 2 1
o o o o

N N NX X X X X X X−< < < < < < < . 

Define a interval ( ),x x x+ , then we have the probability:

 

P X x F x

P x X x x f x x

P x x X F x x

i
o

i
o

i
o

≤{ } = ( )

< < +{ } = ( )

+ ≤{ } = − +( )








 

 1





 (38)

For N  order statistics, there are the corresponding 1N +  interval statistics. We assume that one interval statistic o
iX  is in the interval 

( ),x x x+ , and i  interval statistics are in the interval ( ), x−∞ . Thus, there are N i−  interval statistics in the interval ( ),x x+ +∞ . Therefore,

 
P x x x x C C F x f x x F x xi

o
N N

i i N i
< < +{ } = ( )  ( ) +( ) +

−
  1

1  (39)

Then, the probability density function of o
iX  can be obtained by:

      g x
P x x x x

x
N

i N i
F xi

o

x

i
o

i
o i( ) =

< < +{ }
=

+( )
−( ) ( )




×

→



0

1
lim

!
! !

11− ( )



 ( )−

F x f xi
o N i

i
o , 0,1,2, ,i N=   (40)

Similarly, Theorem 2 and 3 can be proved.
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