PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrothermal Carbonization Kinetics of Lignocellulosic Municipal Solid Waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydrothermal carbonization (HTC) is known as a thermochemical converting of wet biomass into a coal-like solid fuel (hydrochar). Hydrochar is easily crumbled. Because of hydrophobic properties, hydrochar is difficult to degrade by microorganisms. It has a calorific value comparable to lignite coal. In this study, hydrochar was made via converting the organic fraction of municipal solid waste through HTC at 190, 210, and 230°C for 30 min with feed to water ratio (FWR) 0.1, 0.2, 0.3. The feedstock processed includes food waste, paper, and wood waste, represented as a pseudo-component of the organic fraction of MSW. The high heating value (HHV), FTIR, as well as proximate and ultimate analyses were applied both to feedstock and hydrochar. The results showed that the energy density of hydrochar was elevated with increasing HTC temperature. The energy densification ratio and heating value increased by approximately 1.0–1.32 and 30%, respectively compared to raw feedstock. The lower yields of hydrochar were obtained at higher temperature. The typical char yields for lignocellulosic material range between 62–63 wt% at 190 °C and reduce to 54–57 wt% at 230 °C. Furthermore, a preliminary study of kinetic model for lignocellulose decomposition was conducted. This model was based on the mass loss rate of the lignocellulose compound in HTC of MSW. Three first-order reactions were given to illustrate the hydrochar yield at of 190, 210, and 230°C. The activation energy of lignocellulose decomposition was 76.26 kJ/mol, 51.86 kJ/mol, 12,23 kJ/mol for lignin, cellulose, and hemicellulose decomposition, respectively.
Rocznik
Strony
188--198
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Research Unit for Clean Technology, Indonesian Institute of Sciences, Jl. Cisitu Sangkuriang No. 21 D Bandung 40135, Indonesia
  • Research Unit for Clean Technology, Indonesian Institute of Sciences, Jl. Cisitu Sangkuriang No. 21 D Bandung 40135, Indonesia
  • Faculty of Civil and Environmental Engineering, Bandung Institute of Technology, Jl. Ganesha No. 10 Bandung 40132, Indonesia
autor
  • Faculty of Civil and Environmental Engineering, Bandung Institute of Technology, Jl. Ganesha No. 10 Bandung 40132, Indonesia
  • Faculty of Mechanical and Aerospace Engineering, Bandung Institute of Technology, Jl. Ganesha No. 10 Bandung 40132, Indonesia
Bibliografia
  • 1. Bach, Q.V., Tran, K.Q., Øyvind, S., Trinh, T.T., 2015. Effects of wet torrefaction on pyrolysis of woody biomass fuels. Energy, 88, 443–456. DOI: http://doi.org/10.1016/j.energy.2015.05.062
  • 2. Bobleter, O., 1994. Hydrothermal degradation of polymers derived from plants. Progress in polymer science 19(5), 797–841. DOI: http://doi.org/10.1016/00796700(94)90033–7
  • 3. BP Statistical Review of World Energy, Indonesia Insights, From BP, Publication (June 2017).https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-conomics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-indonesiainsights.pdf (accessed on January 10, 2018)
  • 4. Calucci, L., Rasse, D. P., Forte, C., 2012. Solidstate nuclear magnetic resonance characterization of chars obtained from hydrothermal carbonization of corncob and Miscanthus. Energ. Fuel., 27(1), 303–309. DOI: http://doi.org/10.1021/ef3017128
  • 5. Channiwala, S., Parikh, P., 2002. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81(8), 1051–1063. DOI: http://doi.org/10.1016/S0016–2361(01)00131–4
  • 6. Damanhuri, E., 2005. Some principal issues on municipal solid waste management in Indonesia. Expert Meeting on Waste Management in Asia-Pacific Islands, Oct 27–29, Tokyo. www.kuliah.ftsl.itb.ac.id/wp-content/uploads/2008/08/tokyo-271005.pdf
  • 7. Fang, J., Zhan, L., Ok, Y.S., Gao, B., 2018. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J. Ind. Eng. Chem., 57, 15–21. http://doi.org/10.1016/j.jiec.2017.08.026
  • 8. Funke, A., Ziegler, F., 2010. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioproducts & Biorefining-Biofpr, 4, 160–177. http://doi.org/10.1002/bbb.198
  • 9. Grénman, H., Eränen, K., Krogell, J., Willför, S., Salmi, T., Murzin, D.Y., 2011. The kinetics of aqueous extraction of hemicelluloses from spruce in an intensified reactor system. Ind. Eng. Chem. Res. 50, 3818–3828. DOI: http://doi.org/10.1021/ie101946c
  • 10. Heilmann, S.M., Davis, H.T., Jaden, L.R., Lefebvre, P.A, Sadowsky, M.J., Schendel, F.J., von Keitz, M.G., Valentas, K.J., 2010. Hydrothermal carbonization of microalgae. Biomass and Bioenergy, 34(6): 875–882. DOI: http://doi.org/10.1016/j.biombioe.2010.01.032
  • 11. Hoekman, S.K., Broch, A., Robbins, C., 2011. Hydrothermal carbonization (HTC) of lgnocellulosic biomass. Energy Fuels, 25 (4), 1802–1810. DOI: http://doi.org/10.1021/ef101745n
  • 12. Hrncic, M.K., Kravanja, G., Knez, Z., 2016. Hydrothermal treatment of biomass for energy and chemicals. Energy, 116(2), 1312–1322. DOI: http://doi.org/10.1016/j.energy.2016.06.148
  • 13. Indonesian domestic solid waste statistics year 2008. https://inswa.or.id/wp-content/.../07/Indonesian-Domestic-Solid-Waste-Statistics-20082.pdf Accessed on March 12, 2018.
  • 14. Indrawan, B., Prawisudha, P., Yoshikawa, K., 2011. Chlorine-free solid fuel production from municipal solid waste by hydrothermal process. Journal of the Japan Institute of Energy, 90, 1177–1182
  • 15. Iryani, D.A., Kumagai, S., Nonaka, M., Sasaki, K., Hirajima, T., 2016. Hydrothermal carbonization kinetics of sugarcane bagasse treated by hot compressed water under variabel temperature conditions. ARPN Journal of Engineering and Applied Sciences 11(7): 4833–4839.
  • 16. Jatzwauck, M., Schumpe, A., 2015. Kinetics of hydrothermal carbonization (HTC) of soft rush. Biomass and Bioenergy, 75, 94–100. DOI: http://doi.org/10.1016/j.biombioe.2015.02.006
  • 17. Kim, D., Lee, K., Park, K.Y., 2014. Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 130, 120–125. DOI: http://doi.org/10.1016/j.fuel.2014.04.030
  • 18. Kim, D., Prawisudha, P., Yoshikawa, K., 2012. Hydrothermal upgrading of Korean MSW for solid fuel production: effect of MSW composition. Journal of Combustion, 1–8. DOI: http://doi.org/10.1155/2012/781659
  • 19. Liu, Z. G., Quek, A., Hoekman, S. K., Balasubramanian, R., 2013. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103, 943–949. DOI: http://doi.org/10.1016/j.fuel.2012.07.069
  • 20. Matsakasa, L., Gaob, Q., Janssonb, S., Rovaa, U., Christakopoulos, P., 2017. Green conversion of municipal solid wastes into fuels and chemicals. Electronic Journal of Biotechnology, 26, 69–83. DOI: http://doi.org/10.1016/j.ejbt.2017.01.004
  • 21. Peterson, A.A., Vogel, F., Lachance, R.P., Froling, M., Antal, M.J., Tester, J.W., 2008. Thermochemical biofuel production in hydrothermal media: a review of suband supercritical water technologies. Energy Environ. Sci. 1, 32–65. DOI: http://doi.org/10.1039/b810100k
  • 22. Prins, M.J., Ptasinski, K.J., Janssen, J.J.G.F., 2006. Torrefaction of wood: part 1. Weightloss kinetics. J. Anal. Appl. Pyrolysis 77, 28–34. DOI: http://doi.org/10.1016/j.jaap.2006.01.002
  • 23. Putra, H.E., Dewi, K., Pasek, A.D., Damanhuri, E., 2018. Hydrothermal carbonization of biomass waste under low temperature condition. MATEC Web of Conferences 154, 01025. DOI: http://doi.org/10.1051/matecconf/201815401025
  • 24. Ramke, H.G., Blohse, D., Lehmann, H.J., Fettig, J., 2009. Hydrothermal carbonization of organic waste. Twelfth International Waste Management and Landfill Symposium, International Waste Working Group (IWWG). Available online: www.hs-owl.de/fb8/fachgebiete/abfallwirtschaft/.../Sardinia_2009_HTC_Internet.pdf
  • 25. Reza, M.T., Yan, W., Uddin, M.H., Lynam, J.G., Hoekman, S.K., Coronella, C.J., Vásquez, V.R., 2013. Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresource Technology, 139C,161–169. DOI: http://doi.org/10.1016/j.biortech.2013.04.028
  • 26. Sasaki, M., Fang, Z., Fukushima, Y., Adschiri, T., Arai, K., 2000. Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind. Eng. Chem. Res., 39 (8), 2883–2890. DOI: http://doi.org/10.1021/ie990690j
  • 27. Sevilla, M., Fuertes, A.B., 2009. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon, 47, 2281–2289. DOI: http://doi.org/10.1016/j.carbon.2009.04.026
  • 28. Titirici, M.M., Thomas, A., Yu, S.H., Müller, J., Antonietti, M., 2007. A dire ct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chemistry of Materials, 19(17), 4205–4212. http://doi.org/10.1021/cm0707408
  • 29. Yan, W., Hastings, J.T., Acharjee, T.C., Coronella, C.J., Vásquez, V.R., 2010. Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuels, 24 (9), 4738–4742. DOI: http://doi.org/10.1021/ef901273n
  • 30. Yao, Z., Ma, X., Lin, Y., 2016. Effects of hydrothermal treatment temperature and residence time on characteristics and combustion behaviors of green waste. Applied Thermal Engineering, 104, 678–686. DOI: http://doi.org/10.1016/j.applthermaleng.2016.05.111
  • 31. Yoshikawa, K. Hydrothermal treatment of municipal solid waste to produce solid fuel. 7th International Energy Conversion Engineering Conference, International Energy Conversion Engineering Conference (IECEC), https://doi.org/10.2514/6.2009–4606
  • 32. Yuliansyah, A.T., Hirajima, T., Kumagai, S., Sasaki, K., 2010. Production of solid biofuel from agricultural wastes of the palm oil industry by hydrothermal treatment. Waste and biomass valorization, 1(4), 395–405. DOI: http://doi.org/10.1007/s12649–010–9045–3
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c69d1290-c9fe-4549-ab16-5da1e0406cfa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.