PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of habitat heterogeneity on the biodiversity and density of the zooplankton community in shallow wetlands (Upo wetlands, South Korea)

Identyfikatory
Języki publikacji
EN
Abstrakty
EN
Macrophytes play a major role in the structuring of aquatic environments, and create diverse microhabitats. Therefore, these plants represent an important factor regulating the zooplankton biomass, taxonomic composition, and distribution in freshwater ecosystems. In the current study, we examined the effects of the structural heterogeneity provided by various macrophytes. We identified four habitat types in this study: (1) open water (without macrophytes), (2) the helophyte zone, (3) the pleustophyte zone, and (4) the mixed vegetation zone (containing pleustophytes, nymphaeids, and elodeids). We tested the hypothesis that complex habitat structures support large zooplankton assemblages. Specifically, we collected zooplankton samples from a total of 119 sampling points in the Upo Wetlands, South Korea, during the spring and autumn of 2009. The largest zooplankton assemblage was found in the mixed macrophyte zone, followed by the helophyte and pleustophyte zones. The pleustophyte zone supported larger zooplankton assemblages during autumn compared to spring. Differences in zooplankton assemblages were considered to be strongly related to seasonal variation in the development and growth of pleustophytes. However, two-way ANOVA revealed that seasons had no significant influence on the zooplankton density and diversity. Instead, different habitat types substantially determined zooplankton characteristics. In conclusion, we demonstrated that wetland areas with high macrophyte species diversity contribute toward higher zooplankton diversity.
Rocznik
Strony
485--492
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • National Institute of Ecology, Seocheon-gun Maseo-myon Geumgang-ro 1210, Chungcheongnam-do, Republic of Korea
autor
  • Department of Biological Sciences, Pusan National University, Busan 609-735, Republic of Korea
autor
  • Department of Biological Sciences, Pusan National University, Busan 609-735, Republic of Korea
autor
  • Department of Biological Sciences, Pusan National University, Busan 609-735, Republic of Korea
Bibliografia
  • [1]. Bazzaz, F.A. (1975). Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology 56: 485-488.
  • [2]. Beklioglu, M. & Moss, B. (1996). Mesocosm experiments on the interaction of sediment influence, fish predation and aquatic plants with the structure of phytoplankton and zooplankton communities. Freshwater Biol. 36: 315-325. DOI: 10.1046/j.1365-2427.1996.00092.x.
  • [3]. Burks, R.L., Lodge, D.M., Jeppesen, E. & Lauridsen, T.L. (2002). Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biol. 47: 343¬365. DOI: 10.1046/j.1365-2427.2002.00824.x.
  • [4]. Chao, A. & Shen, T.J. (2010). Program SPADE (Species Prediction And Diversity Estimation). Program and User's Guide. Available at: http://chao.stat.nthu.edu.tw.
  • [5]. Declerck, S., Vandekerkhove, J., Johansson, L., Muylaert, K., Conde-Porcuna, J.M. et al. (2005). Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86: 1905-1915. DOI: 10.1890/04-0373.
  • [6]. Dennis, P., Young, M.R. & Gordon, I.J. (1998). Distribution and abundance of small insects and arachnids in relation to structural heterogeneity of grazed, indigenous grasslands. Ecol. Entomol. 23: 253-264. DOI: 10.1046/j.1365-2311.1998.00135.x.
  • [7]. Fennessy, M.S., Cronk, J.K. & Mitsch, W.J. (1994). Macrophyte productivity and community development in created freshwater wetlands under experimental hydrological conditions. Ecol. Eng. 3: 469-484. DOI: 10.1016/0925- 8574(94)00013-1.
  • [8]. Ganzhorn, J.U., Malcornber, S., Andrianantoanina, O. & Goodman, S.M. (1997). Habitat characteristics and lemur species richness in Madagascar. Biotropica 29: 331-343. DOI: 10.1111 /j.1744-7429.1997.tb00434.x.
  • [9]. Hanowski, J.M., Niemi, G.J. & Christial, D.C. (1997). Influence of within-plantation heterogeneity and surrounding landscape composition on avian communities in hybrid
  • [10]. Impact of habitat heterogeneity on zooplankton poplar plantations. Conserv. Biol. 11: 936-944. DOI: 10.1046/j.1523-1739.1997.96173.x.
  • [11]. Jeong, K.S., Kim, D.K. & Joo, G.J. (2007). Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea). Water Res. 41: 1269-1279. DOI: 10.1016/j.watres.2006.11.054.
  • [12]. Jeppesen, E., Lauridsen, T.L., Kairesalo, T. & Perrow, M.R. (1998). Impact of submerged macrophytes on fish- zooplankton interactions in lakes. In E. Jeppesen, M. Sondergaard, M. Sondergaard, K. Christoffersen (Eds.), The Structuring Role of Submerged Macrophytes in Lakes (pp. 91-114). Springer Verlag, New York.
  • [13]. Jones, G.P. & Syms, C. (1998). Disturbance, habitat structure and the ecology of fishes on coral reefs. Aust. J. Ecol. 23: 287-297. DOI: 10.1111/j.1442-9993.1998.tb00733.x.
  • [14]. Kuczynska-Kippen, N. & Nagengast, B. (2006). The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities. Hydrobiologia 559: 203-212. DOI: 10.1007/s10750-005-0867-0.
  • [15]. Lauridsen, T.L. & Lodge, D.M. (1996). Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnol. Oceanogr. 41: 794-798. DOI: 10.4319/lo.1996.41.4.0794.
  • [16]. Lauridsen, T., Pedersen, L.J., Jeppesen, E. & Sondergaard, M. (1996). The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. J. Plankton Res. 18: 2283-2294. DOI: 10.1093/ plankt/18.12.2283.
  • [17]. Manatunge, J., Asaeda, T. & Priyadarshana, T. (2000). The influence of structural complexity on fish-zooplankton interactions: A study using artificial submerged macrophytes. Environ, biol. Fish. 58: 425-438. DOI: 10.1023/A:1007691425268.
  • [18]. Meerhoff, M., Mazzeo, N., Moss, B. & Rodriguez-Gallego, L. (2003). The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquat. Ecol. 37: 377-391. DOI: 10.1023/B:AECO.0000007041.5784 3.0b.
  • [19]. Meerhoff, M., Fosalba, C., Bruzzone, C., Mazzeo, N., Noordoven, W. et al. (2006). An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshwater Biol. 51: 1320¬1330. DOI: 10.1111/j .1365-2427.2006.01574.x.
  • [20]. Mizuno, T. & Takahashi, E. (1999). An illustrated guide to freshwater zooplankton in Japan. Tokai University press. Tokyo.
  • [21]. Moss, B., Kornijow, R. & Measey, G. (1998). The effect of nymphaeid (Nuphar lutea) density and predation by perch (Perca fluviatilis) on the zooplankton communities in a shallow lake. Freshwater Biol. 39: 689-697. DOI: 10.1046/j.1365-2427.1998.00322.x.
  • [22]. Roberts, C.M. & Ormond, R.F.G. (1987). Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Mar. Ecol. Prog. Ser. 41: 1-8. DOI: 10.3354/ meps041001.
  • [23]. Schriver, P., Bogestrand, J., Jeppesen, E. & Sondergaard, M. (1995). Impact of submerged macrophytes on fish- zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biol. 33: 255-270. DOI: 10.1111/j.1365-2427.1995. tb01166.x.
  • [24]. Shannon, C.E. & Weaver, W. (1949). A mathematical theory of communication. University of Illinois Press, Urbana, USA.
  • [25]. Snickars, M., Sandström, A. & Mattila, J. (2004). Antipredator behaviour of 0+ year Perca fluviatilis: effect of vegetation density and turbidity. J. Fish Biol. 65: 1604-1613. DOI: 10.1111/j.0022-1112.2004.00570.x.
  • [26]. Southwell, C.J., Cairns, S.C., Pople, A.R. & Delaney, R. (1999). Gradient analysis of macropod distribution in open forest and woodland of eastern Australia. Aust. J. Ecol. 24: 132-143. DOI: 10.1046/j.1442-9993.1999.241954.x.
  • [27]. Thomaz, S.M., Dibble, E.D., Evangelista, L.R., Higuti, J. & Bini, L.M. (2008). Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biol. 53: 358-367. DOI: 10.1111/j.1365-2427.2007.01898.x.
  • [28]. van der Valk, A.G. (2006). The biology of freshwater wetlands. Oxford University Press. Oxford, 2 p.
  • [29]. Vermaat, J.E., Santamaria, L. & Roos, P.J. (2000). Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Archiv für Hydrobiologie 148: 549-62.
  • [30]. Vieira, L.C.G., Bini, L.M., Velho, L.F.M. & Mazâo, G.R. (2007). Influence of spatial complexity on the density and diversity of periphytic rotifers, microcrustaceans and testate amoebae. Fund. Appl Limnol. 170: 77-85. DOI: http://dx.doi.org/10.1127/1863-9135/2007/0170-0077.
  • [31]. Warfe, D.M. & Barmuta, L.A. (2004). Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141: 171-178. DOI: 10.1007/ s00442-004-1644-x.
  • [32]. Wetzel, R G. (1983). Limnology. Saunders College Publishing. Philadelphia.
  • [33]. Wetzel, R.G. & Likens, G.E. (2000). Limnological Analyses. Springer-Verlag. NY.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Identyfikator YADDA
bwmeta1.element.baztech-c69c8ff9-cab7-48a5-a04b-f2849baa5436