PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tuning PID and PI-PI servo controllers by multiple pole placement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tuning rules for PID and PI-PI servo controllers are developed using a pole placement approach with a multiple pole, i.e. a triple one in the case of PID and a quadruple for PI-PI. The controllers involve complex roots in the numerators of the transfer functions. This is not possible in the classical P-PI structure which admits real roots only. The settling time of the servos determined by the multiple time constant is the only design parameter. Nomograms to read out discrete controller settings in terms of the time constant and control cycle are given. As compared to the classical structures, the upper limit on the control cycle is now twice longer in the case of PID, and four times in the case of PI-PI. This implies that the settling times can be shortened by the same ratios. Responses of a PLC-controlled servo confirm the validity of the design.
Rocznik
Strony
art. no. e139957
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Department of Computer and Control Engineering, Rzeszów University of Technology, W. Pola 2, 35-959 Rzeszów, Poland
  • Department of Computer and Control Engineering, Rzeszów University of Technology, W. Pola 2, 35-959 Rzeszów, Poland
Bibliografia
  • [1] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics. Berlin Heidelberg: Springer, 2008.
  • [2] G. Ellis, Ed., Control System Design Guide, 4th ed. Butterworth-Heinemann, 2012.
  • [3] G.W. Younkin, Industrial Servo Control Systems, 2nd ed. New York: Marcel Dekker, 2002.
  • [4] S.-M. Yang and K.-W. Lin, “Automatic Control Loop Tuning for Permanent-Magnet AC Servo Motor Drives,” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1499–1506, 2016.
  • [5] G.F. Franklin, J.D. Powell, and A.F. Emami-Naeini, Feedback Control of Dynamic Systems, 7th ed. Reading: Addison-Wesley, 2019.
  • [6] L. Sciavicco and B. Siciliano, Modelling and Control of Robot Manipulators. London: Springer, 2000.
  • [7] T. Tarczewski, M. Skiwski, L.J. Niewiara, and L.M. Grzesiak, “High-performance PMSM servo-drive with constrained state feedback position controller,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, pp. 49–58, 2018.
  • [8] V. Rao and D. Bernstein, “Naive control of the double integrator,” IEEE Control Syst. Mag., vol. 21, pp. 86–97, 2001.
  • [9] P.B. Schmidt and R.D. Lorenz, “Design principles and implementation of acceleration feedback to improve performance of DC drives,” IEEE Trans. Ind. Appl., vol. 28, no. 3, pp. 594–599, 1992.
  • [10] T. Żabiński and L. Trybus, “Tuning P-PI and PI-PI controllers for electrical servos,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, pp. 51–58, 2010.
  • [11] D.E. Seborg, T.F. Edgar, D.A. Mellichamp, and F.J. Doyle, Process Dynamics and Control, 4th ed. New York: Wiley, 2016.
  • [12] C. Grimholt and S. Skogestad, “Optimal PI and PID control of first-order plus delay processes and evaluation of the original and improved SIMC rules,” J. Process Control, vol. 70, pp. 36–46, 2018.
  • [13] K.J. Åström and T. Hägglund, Advanced PID Control, Research Triangle Park, 2005.
  • [14] “Maxima CAS homepage.” [Online]. Available: https://maxima.sourceforge.io/.
  • [15] “ESTUN Industrial Technology Europe.” [Online]. Available: https://www.estuneurope.eu/.
  • [16] “BECKHOFF New Automation Technology.” [Online]. Available: https://www.beckhoff.com/.
  • [17] EN 61131-3, Programmable controllers – Part 3: Programming languages (IEC 61131-3:2013), International Standard, CEN-ELEC Std., 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c698aaf5-04fa-49d3-b001-6b3e1b4d5f47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.