Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Attention Deficit Hyperactivity Disorder (ADHD) is a neurological condition, typically manifesting in childhood. Behavioral studies are used to treat the illness, but there is no conclusive way to diagnose it. To comprehend changes in the brain, electroencephalography (EEG) signals of ADHD patients are frequently examined. In the proposed study, we introduce EEG feature map (EEG-FM)-based image construction to input deep learning architectures for classifying ADHD. To demonstrate the effectiveness of the proposed method, EEG data of 15 ADHD patients and 18 control subjects are analyzed and detection performance is presented. EEG-FMbased images are obtained using both traditional time domain features used in EEG analysis, such as Hjorth parameters (activity, mobility, complexity), skewness, kurtosis, and peak-to-peak, and nonlinear features such as the largest Lyapunov Exponent, correlation dimension, Hurst exponent, Katz fractal dimension, Higuchi fractal dimension, and approximation entropy. EEG-FM-based images are used to train DarkNet19 architecture and deep features are extracted for each image dataset. Fewer deep features are chosen for each image dataset using the Minimum Redundancy Maximum Relevance (mRMR) feature selection method, and the concatenated deep feature set is created by merging the selected features. Finally, various machine learning methods are used to classify the concatenated deep features. Our EEG-FM and DarkNet19-based approach yields classification accuracies for ADHD between 96.6% and 99.9%. Experimental results indicate that the use of EEG-FM-based images as input to DarkNet19 architecture gives significant advantages in the detection of ADHD.
Wydawca
Czasopismo
Rocznik
Tom
Strony
450--460
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
- Department of Biomedical Engineering, Izmir Katip Celebi University, Cigli, 36520, Izmir, Turkey
autor
- Department of Electrical and Electronics Engineering, Izmir University of Economics, Balcova, 35330, Izmir, Turkey
autor
- Department of Biophysics, Faculty of Medicine, Izmir Katip Celebi University, Cigli, 36520, Izmir, Turkey
Bibliografia
- [1] Ghaderyan P, Moghaddam F, Khoshnoud S, Shamsi M. New interdependence feature of EEG signals as a biomarker of timing deficits evaluated in attention-deficit/hyperactivity disorder detection. Measurement 2022;199:111468.
- [2] Bakhtyari M, Mirzaei S. ADHD detection using dynamic connectivity patterns of EEG data and ConvLSTM with attention framework. Biomed Signal Process Control 2022;76:103708.
- [3] Férat V, Arns M, Deiber M-P, Hasler R, Perroud N, Michel CM, et al. Electroencephalographic microstates as novel functional biomarkers for adult attention-deficit/hyperactivity disorder. Biol Psychiatry: Cogn Neurosci Neuroimag 2022;7(8):814-23.
- [4] Altınkaynak M, Dolu N, Güven A, Pektaş F, Özmen S, Demirci E, et al. Diagnosis of attention deficit hyperactivity disorder with combined time and frequency features. Biocybern Biomed Eng 2020;40(3):927-37.
- [5] Chen H, Chen W, Song Y, Sun L, Li X. EEG characteristics of children with attention-deficit/hyperactivity disorder. Neuroscience 2019;406:444-56.
- [6] González JJ, Méndez LD, Mańas S, Duque MR, Pereda E, De Vera L. Performance analysis of univariate and multivariate EEG measurements in the diagnosis of ADHD. Clin Neurophysiol 2013;124(6):1139-50.
- [7] Johnstone SJ, Parrish L, Jiang H, Zhang D-W, Williams V, Li S. Aiding diagnosis of childhood attention-deficit/hyperactivity disorder of the inattentive presentation: Discriminant function analysis of multi-domain measures including EEG. Biol Psychol 2021;161:108080.
- [8] Singh A, Yeh CJ, Verma N, Das AK. Overview of attention deficit hyperactivity disorder in young children. Health Psychol Res 2015;3(2).
- [9] Tenev A, Markovska-Simoska S, Kocarev L, Pop-Jordanov J, Müller A, Candrian G. Machine learning approach for classification of ADHD adults. Int J Psychophysiol 2014;93(1):162-6.
- [10] Buyck I, Wiersema JR. State-related electroencephalographic deviances in attention deficit hyperactivity disorder. Res Development Disabilities 2014;35(12):3217-25.
- [11] Mohammadi MR, Khaleghi A, Nasrabadi AM, Rafieivand S, Begol M, Zarafshan H. EEG classification of ADHD and normal children using non-linear features and neural network. Biomed Eng Lett 2016;6(2):66-73.
- [12] Tor HT, Ooi CP, Lim-Ashworth NS, Wei JKE, Jahmunah V, Oh SL, Acharya UR, Fung DSS. Automated detection of conduct disorder and attention deficit hyperactivity disorder using decomposition and nonlinear techniques with EEG signals. Comput Methods Programs Biomed 2021;200:105941.
- [13] Boroujeni YK, Rastegari AA, Khodadadi H. Diagnosis of attention deficit hyperactivity disorder using non-linear analysis of the EEG signal. IET Syst Biol 2019;13(5):260-6.
- [14] Ghassemi F, Hassan_Moradi M, Tehrani-Doost M, Abootalebi V. Using non-linear features of EEG for ADHD/normal participants’ classification. Procedia-Soc Behav Sci 2012;32:148-52.
- [15] Khoshnoud S, Nazari MA, Shamsi M. Functional brain dynamic analysis of ADHD and control children using nonlinear dynamical features of EEG signals. J Integrat Neurosci 2018;17(1):17-30.
- [16] Allahverdy A, Moghadam AK, Mohammadi MR, Nasrabadi AM. Detecting ADHD children using the attention continuity as nonlinear feature of EEG. Front Biomed Technol 2016;3(1–2):28-33.
- [17] Chen H, Song Y, Li X. A deep learning framework for identifying children with ADHD using an EEG-based brain network. Neurocomputing 2019;356:83-96.
- [18] Vahid A, Bluschke A, Roessner V, Stober S, Beste C. Deep learning based on event-related EEG differentiates children with ADHD from healthy controls. J Clin Med 2019;8(7):1055.
- [19] Moghaddari M, Lighvan MZ, Danishvar S. Diagnose ADHD disorder in children using convolutional neural network based on continuous mental task EEG. Comput Methods Programs Biomed 2020;197:105738.
- [20] Ahmadi A, Kashefi M, Shahrokhi H, Nazari MA. Computer aided diagnosis system using deep convolutional neural networks for ADHD subtypes. Biomed Signal Process Control 2021;63:102227.
- [21] Dubreuil-Vall L, Ruffini G, Camprodon JA. Deep learning convolutional neural networks discriminate adult ADHD from healthy individuals on the basis of event-related spectral EEG. Front Neurosci 2020;14:251.
- [22] Tosun M. Effects of spectral features of EEG signals recorded with different channels and recording statuses on ADHD classification with deep learning. Phys Eng Sci Med 2021;44(3):693-702.
- [23] Topic A, Russo M. Emotion recognition based on EEG feature maps through deep learning network. Eng Sci Technolo Int J 2021;24(6):1442-54.
- [24] Chao H, Dong L, Liu Y, Lu B. Emotion recognition from multiband EEG signals using CapsNet. Sensors 2019;19(9):2212.
- [25] Li Y, Huang J, Zhou H, Zhong N. Human emotion recognition with electroencephalographic multidimensional features by hybrid deep neural networks. Appl Sci 2017;7(10):1060.
- [26] Cura OK, Akan A, Yilmaz GC, Ture HS. Detection of alzheimer’s dementia by using signal decomposition and machine learning methods. Int J Neural Syst 2022;32(09):2250042.
- [27] Redmon J, Farhadi A. YOLO9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, p. 7263-71.
- [28] Baygin M, Yaman O, Barua PD, Dogan S, Tuncer T, Acharya UR. Exemplar Darknet19 feature generation technique for automated kidney stone detection with coronal CT images. Artif Intell Med 2022;127:102274.
- [29] Benali Amjoud A, Amrouch M. Convolutional neural networks backbones for object detection. In: International conference on image and signal processing. Springer; 2020, p. 282-9.
- [30] Ghenescu V, Mihaescu RE, Carata S-V, Ghenescu MT, Barnoviciu E, Chindea M. Face detection and recognition based on general purpose DNN object detector. In: 2018 International symposium on electronics and telecommunications. IEEE; 2018, p. 1-4.
- [31] Shirzad MB, Keyvanpour MR. A feature selection method based on minimum redundancy maximum relevance for learning to rank. In: 2015 AI & robotics. IEEE; 2015, p. 1-5.
- [32] Cruz-Roa A, Caicedo JC, González FA. Visual pattern mining in histology image collections using bag of features. Artif Intell Med 2011;52(2):91-106.
- [33] Anuragi A, Sisodia DS, Pachori RB. EEG-based cross-subject emotion recognition using Fourier-bessel series expansion based empirical wavelet transform and NCA feature selection method. Inform Sci 2022;610:508-24.
- [34] Chen T, Antoniou G, Adamou M, Tachmazidis I, Su P. Automatic diagnosis of attention deficit hyperactivity disorder using machine learning. Appl Artif Intell 2021;35(9):657-69.
- [35] Ozdemir MA, Cura OK, Akan A. Epileptic EEG classification by using time-frequency images for deep learning. Int J Neural Syst 2021;31(08):2150026.
- [36] Tuncer T, Dogan S, Subasi A. A new fractal pattern feature generation function based emotion recognition method using EEG. Chaos Solitons Fractals 2021;144:110671.
- [37] Zhang Y, Wang K, Wei Y, Guo X, Wen J, Luo Y. Minimal EEG channel selection for depression detection with connectivity features during sleep. Comput Biol Med 2022;147:105690.
- [38] Das K, Pachori RB. Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals. Biomed Signal Process Control 2021;67:102525.
- [39] Motie Nasrabadi A, Allahverdy A, Samavati M, Mohammadi MR. EEG data for ADHD/control children. 2020, http://dx.doi.org/10.21227/rzfh-zn36.
- [40] Talebi N, Nasrabadi AM. Investigating the discrimination of linear and nonlinear effective connectivity patterns of EEG signals in children with attention-deficit/hyperactivity disorder and typically developing children. Comput Biol Med 2022;148:105791.
- [41] Ekhlasi A, Nasrabadi AM, Mohammadi M. Classification of the children with ADHD and healthy children based on the directed phase transfer entropy of EEG signals. Front Biomed Technol 2021.
- [42] Esas MY, Latifoğlu F. Detection of ADHD from EEG signals using new hybrid decomposition and deep learning techniques. J Neural Eng 2023;20(3):036028.
- [43] Maniruzzaman M, Shin J, Hasan MAM, Yasumura A. Efficient feature selection and machine learning based ADHD detection using EEG signal.. Comput Mater Continua 2022;72(3).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6929c18-3cd5-4ad4-a4c8-55a46e9b54a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.