PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistical Analysis of the Productivity of Phytocoenoses of Energy Cultures due to Implementation of Wastewater Sediment on Aluvisols of Ukraine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The cultivation of energy crops is an important component of renewable bioenergy, which pursues the goal of reducing greenhouse gas emissions and determines the effective management of fertility and land use of marginal lands and disturbed areas of various nature. As a result of the conducted research, convincing relationships were established between the application of sewage sludge with a compensatory dose of mineral fertilizers and the productivity of grassy energy crops. The greatest increase in green mass is provided by the application of SS (SS – 40 t/ha + N10P14K58) for all studied crops. Applying sewage sludge with the addition of mineral fertilizers is an effective way to increase the productivity of green mass by 57–64% for such energy crops as Jerusalem artichoke, Silphium perfoliatum L, Miscanthus giganteus, and switchgrass (Panicum virgatum L).
Słowa kluczowe
Rocznik
Strony
192--201
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony 15, 03041, Kyiv, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska Street, 15, 76000, Ivano-Frankivsk, Ukraine
autor
  • Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska Street, 15, 76000, Ivano-Frankivsk, Ukraine
  • Kyiv National Economic University named after Vadym Hetman, Prospekt Peremogy, 54/1, 03057, Kyiv, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska Street, 15, 76000, Ivano-Frankivsk, Ukraine
autor
  • Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska Street, 15, 76000, Ivano-Frankivsk, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska Street, 15, 76000, Ivano-Frankivsk, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas, Karpatska Street, 15, 76000, Ivano-Frankivsk, Ukraine
Bibliografia
  • 1. Campbell J.E., Lobell David B., Genova Robert C. 2013. Zumkehr Andrew and Field Christopher B. 2013. Seasonal energy storage using bioenergy production from abandoned croplands. Environmental Research Letters, 8(3). https://doi.org/10.1088/1748-9326/8/3/035012
  • 2. Dauber J., Miyake S. 2016. To integrate or to segregate food crop and energy crop cultivation at the landscape scale? Perspectives on biodiversity conservation in agriculture in Europe. Energ Sustain Soc, 6, 25. https://doi.org/10.1186/s13705-016-0089-5
  • 3. Frédette C., Labrecque М., Comeau Y., Brisson J. 2019. Willows for environmental projects: A literature review of results on evapotranspiration rate and its driving factors across the genus Salix. Journal of Environmental Management, 246, 526–537.
  • 4. Fijałkowski K., Kwarciak-Kozłowska A. 2021. Sewage Sludge as Soil Conditioner and Fertilizer. Handbook of Assisted and Amendment: Enhanced Sustainable Remediation Technology, 14. https://doi.org/10.1002/9781119670391.ch14
  • 5. He Y., Jaiswal D., Liang X., Sun C., Long S.P. 2022. Perennial biomass crops on marginal land improve both regional climate and agricultural productivity. GCB Bioenergy, 14(5), 497–619. https://doi.org/10.1111/gcbb.12937
  • 6. Heletukha H.H., Zhelezna T.A., Drahnev S.V., Bashtovyi A.I. 2020. Teplofìzika ta, 2020 Potential and prospects of energy use of agrobiomass in Ukraine. https://doi.org/10.36296/1819-8058.2020.4(63).89-99
  • 7. Jaya I.K.D., Nurrachman N., Jayaputra J. 2014. The potential of intercropping food crops and energy crop to improve productivity of a degraded agriculture land in arid tropics. J. Degrade. Min. Land Manage., 1(3), 111–116. https://doi.org/10.15243/jdmlm.2014.013.111
  • 8. Kaletnik G., Pryshliak N., Tokarchuk D. 2021. Potential of Production of Energy Crops in Ukraine and their Processing on Solid Biofuels. Ecological Engineering & Environmental Technology, 22(3), 59–70. https://doi.org/10.12912/27197050/135447
  • 9. Kalenska S., Yeremenko O., Novictska N., Yunyk A., Honchar L., Cherniy V., Stolayrchuk T., Kalenskyi V., Scherbakova O., Rigenko A. 2019. Enrichment of field crops biodiversity in conditions of climate changing. Ukrainian Journal of Ecology, 9(1), 19–24.
  • 10. Kulyk M., et al. 2020. Efficiency of Using Biomass from Energy Crops for Sustainable Bioenergy Development. Journal of Environmental Management and Tourism, 11(5), 1040–1053.
  • 11. Long X., Shao H., Liu L., Liu L.P., Liu Z. 2016. Jerusalem artichoke: A sustainable biomass feedstock for biorefinery. Renewable and Sustainable Energy Reviews, 54, 1382–1388.
  • 12. Lopushniak V.I., Hrytsuliak H.M. 2021a. The intensity of the heavy metals by topinambur in the conditions of the oil-polluted areas Iraqi Journal of Agricultural Sciencest 2021, 52(6), 1334–1345.
  • 13. Lopushniak V.I., Hrytsuliak H.M. 2021b. The models of the heavy metal accumulation of the multiple grain energy cultures for wastewater deposition on oil-polluted degraded soils Ecological Engineering and Environmental Technology, 22(4), 1–13.
  • 14. Moon‐Sub L. et al. 2020. The photosynthetic response of C 3 and C 4 bioenergy grass species to fluctuating light, GCB Bioenergy. https://doi.org/10.1111/gcbb.12899
  • 15. Ni Y., Richter Goetz M., Mwabonje O.N., Qi A., Patel M.K., Woods J. 2020. Novel integrated agricultural land management approach provides sustainable biomass feedstocks for bioplastics and supports the UK’s “net-zero” target. Environmental Research Letters, 16(1). https://doi.org/10.1088/1748-9326/abcf79
  • 16. Sandstad N.J., Iordan C.M., Muri H., Cherubin F. 2022. Energy potentials and water requirements from perennial grasses on abandoned land in the former Soviet Union. Environmental Research Letters, 17(4). https://doi.org/10.1088/1748-9326/ac5e67
  • 17. Sas E., Hennequin L.M., Frémont A., Jerbi A., Legault N., Lamontagne J., Fagoaga N., Hallett J.P., Fennell P.S., Barnabé S., Labrecque M., Brereton B.N.J., Pitre F.E. 2021. Biorefinery potential of sustainable municipal wastewater treatment using fastgrowing willow. Science of The Total Environment, 792, 128–146.
  • 18. Syasyev A.V.S. 2004. Vstup do systemy MathCAD: navch. posib. Dnipropetrovsʹk: Vydavnytstvo Dnipropetrovsʹkoho universytetu, 108.
  • 19. Terentʹyev A.Y.U., Volodymyrenko V.M., Bala O.P. 2011. Vykorystannya kompʺyuternykh tekhnolohiy dlya statystychnoyi obroblennya informatsiyi u lisovomu hospodarstvi. Naukovyy visnyk NUBiP Ukrayiny : zb. nauk. pratsʹ. Seriya : Lisivnytstvo ta dekoratyvne sadivnytstvo. K. : Vyd-vo NUBiP Ukrayiny. Vyp, 164(1). [Elektronnyy resurs]. – Dostupnyy z http://www.nbuv.gov.ua/portal/chem_biol/nvnau_lds / 2011_164_1/11tay.pdf.
  • 20. Urbaniak M., Wyrwicka A., Tołoczko W, Serwecińska L., Zieliński M. 2017. The effect of sewage sludge application on soil properties and willow (Salix sp.) cultivation Science of The Total Environment, 586, 66–75. https://doi.org/10.1016/j.scitotenv.2017.02.012
  • 21. Wu F., Muller A., Pfenninger S. 2023. Strategic uses for ancillary bioenergy in a carbon-neutral and fossil-free 2050 European energy system. Environmental Research Letters, 18(1). https://doi.org/10.1088/1748-9326/aca9e1
  • 22. Lopushniak V.I., Hrytsuliak H.M. 2013. Productivity of energy willow at different rates of application of sewage sludge on sod-podzolic soils of the Carpathian region, Motoryzacja i Energetyka Rolnictwa, 4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c68da844-b9fd-4aeb-a8f8-b028a0809959
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.