PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilisation of kinect sensors for the design of a human-robot collaborative workcell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with a present topic of utilisation of nonconventional sensors for solving the tasks of a human-robot collaboration within a shared workcell. The attention is primary focused on an exploring of possibilities of utilisation of low-cost Kinect sensors. The paper presents the methodical steps of solution of a sensor subsystem proposal within conditions of the laboratory robotised workcell, methods applied for the sensors intrinsic parameters calibration and their verification.
Słowa kluczowe
Twórcy
  • University of Žilina, Faculty of Mechanical Engineering, Department of Automation and Production Systems, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
autor
  • University of Žilina, Faculty of Mechanical Engineering, Department of Automation and Production Systems, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
autor
  • University of Žilina, Faculty of Mechanical Engineering, Department of Automation and Production Systems, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
autor
  • University of Žilina, Faculty of Mechanical Engineering, Department of Automation and Production Systems, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
Bibliografia
  • 1.AtonAton, LLC., Quipt – Taming industrial robotics. 2017. Available at: https://atonaton.com/quipt .
  • 2.Beyl T., Nicolai P., Raczkowsky J.: Multi kinect people detection for intuitive and safe human robot cooperation in the operating room. In: Proceedings of the 2013 IEEE International Conference on Advenced Robotics (ICAR), 2013, ISBN: 978–1-4799–2722–7.
  • 3.Bolmsjo G., Bennulf M., Zhang X.: Safety System for Industrial Robots to Support Collaboration. In: Schlick C., Trzcieliński S. (eds) Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future. In: Advances in Intelligent Systems and Computing, vol. 490. Springer. Cham, 2016, ISBN 978–3-319–41697–7_23.
  • 4.Edwards, S.M.: Ros Industial. Description. 2017 Available at: http://rosindustrial.org/about/description/.
  • 5.Elkmann, N.: Safe Human-Robot Cooperation with High Payloads Robots in Industrial Applications (SAPARO), 2017. Available at: http://www.iff.fraunhofer.de/en/business-units/robotic-systems/saparo.html.
  • 6.Gannon, M., Mimus: Coming Face-to-Face With Our Companion Species. In “Fear And Love: Reactions to a Complex World”. McGuirk, J., and Herrero, G, (eds.) Phaidon Press, Ltd. London, UK, 2016.
  • 7.Gupta, S. K., Kaipa, K., Morato, C., Zhao, B.: Ensuring Safety in Human Robot Collaboration in Assembly Applications. Maryland Robotic Center: The Institute for Systems Research. Available on Internet: http://www.terpconnect.umd.edu/~skgupta/HRC.pdf.
  • 8.ISO 10218–1:2006 Robots and robotic devices – Safety requirements of industrial robots – Part 1: Robots; 3.4.
  • 9.ISO 6385:2004 Ergonomic principles in the design of work systems.
  • 10.ISO/TS 15066:2016 Robots and robotic devices – Collaborative robots.
  • 11.Krig S.: Computer Vision Metrics – Survey, Taxonomy, and Analysis. Apress Media, LLC., 2014, ISBN: 978–1-4303–5929–9.
  • 12.Kuric I., Popescu S., Brad S., Popescu D.: New methods and trends in product development and planing. In: Quality and Inovation in engineering and managment, Technical University Cluj-Napoca, 2011. ISBN: 978–973–662–614–2.
  • 13.Materna Z., Kapinus M., Špaňel M., Beran V., Smrž P.: Simplified Industrial Robot Programming: Effects of Errors on Multimodal Interaction in WoZ experiment. In: 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 2016, pages 200–205. Electronic ISSN: 1944–9437.
  • 14.OpenCV Dev. Team.: Camera Calibration and 3D Reconstruction, 2017. Available at: http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html.
  • 15.[15] Pagliari, D. Pinto, L.: Calibration of Kinect for Xbox One and Comparison between the Two Generations of Microsoft Sensors. Sensors. 2015. ISSN 1424–8220.
  • 16.Perzylo A., Somani N., Profanter S., Rickert M., Knoll A.: Multimodal binding of parameters for Task-based robot programming based on semantic descriptions of modalities and parameter types. In: CEUR Workshop Proceedings, Vol. 1540, 2015. Workshop on Multimodal Semantics for Robotic Systems. IEEE/RSJ International Conference on IROS, Hamburg, Germany, 2015 Pages 21–24. ISSN 16130073.
  • 17.Piltz GmbH & Co.KG: Safe camera system SafetyEYE: Montioring and control with a single safe camera system, 2017, Available at: https://www.pilz.com/en-GB/eshop/00106002207042/SafetyEYE-Safe-camera-system.
  • 18.Poppeová, V., Uríček, J., Bulej, V., Havlas, P.: Design of ANTI-collision system for robotics. In: Applied Mechanics and Materials, Vol. 327/ 2013. pp. 1071–1075. ISSN: 1660–9336.
  • 19.Raposo C., Barreto J.P. Nunes U.:Fast and Accurate Calibration of a Kinect Sensor. In: Advanced Concepts for Intelligent Vision Systems, 17th International Conference ACIVS. Springer International Publishing AG, 2016, ISBN: 978–3-319–488679–6.
  • 20.Roitberg A., Somani N., Perzylo A., Rickert M., Knoll A.: Multimodal Human Activity Recognition for Industrial Manufacturing Processes in Robotic Workcells. In: Proceeding of 17th ACM International Conference on Multimodal Interaction, Seattle, USA. Nov. 9–13th, 2015, pages 259–266, ISBN 978–1-4503–3912–4.
  • 21.ROS: About ROS. 2017. Available at: http://www.ros.org/.
  • 22.ROS: How to Calibrate a Monocular Camera. 2017. Available at: http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration.
  • 23.Sága, M., Vaško. M., Čuboňová, N.: Optimalization algorithms in mechnical engeneering applications. In: Harlow: Pearson. 2016, ISBN 978–1-78449–135–2.
  • 24.Siciliano B., Khatib O.: Springer Handbook of Robotics. Springer International Publishing, 2016, ISBN 978–3-319–32550–7.
  • 25.Smisek J., Jancosek M, Pajdla T.: 3D with Kinect. In: Consumer Depth Cameras for Computer Vision: Research Topics and Applications ,Springer, 2013, ISBN: 978–1-4471–4640–7_1.
  • 26.Uricek, J., et al:: The Calculation of Inverse Kinematic for 6DOF Serial Robot, Communications –Scientific Letters of the University of Zilina, ISSN 1335–4205, vol. 16, No. 3A, 2014, 154–160.
  • 27.Vysocky A., Novak P.: Human-Robot Collaboration in Industry. In: MM Science Journal. June 2016, p. 903–906, ISSN 1803–1269. Available on Internet: https://www.imveurope.com/feature/collaborative-co-workers .
  • 28.Zhang Z.: A Flexibile New Technique for Camera Calibration. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, ISSN: 0162–8828.
  • 29.Zolkiewski S., Pioskowik D.: Robot Control and Online Programming by Human Gestures Using a Kinect Motion Sensor. In: New Perspectives in Information Systems and Technologies, vol. 1, pp 593–604. ISBN 978–3-319–05951–8_56.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6807689-62ae-43fe-8902-9c7c27718c49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.