Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Energooszczędny projekt robota wspinaczkowego napędzanego śmigłem na bazie wzmocnionego włóknem szklanym polimeru
Języki publikacji
Abstrakty
Three techniques were investigated to optimize the performance of a propeller-driven climbing robot: i) materials optimization using glass fiber reinforced polymer (GFRP) laminates with three distinct configurations – symmetric cross-layer (0°/90°), antisymmetric cross-layer (0°/90°), and antisymmetric angle-layer (±45°), ii) optimization of the robot chassis structural topology using density-based methods, and iii) laminate thickness (0.5–3.0 mm) and fiber content (50–70 v%). Optimal performance was achieved for an antisymmetric angle-layer configuration of 2.2 mm with 60 v% fiber content, resulting in a weight reduction (6.8%). Combined with a topologically optimized chassis design (20.1% weight reduction), the entire system achieves a 23.5% weight reduction, which translates into energy savings (23.6% torque reduction and 17.3% thrust reduction) while maintaining structural integrity. These results set a new standard for energy-efficient climbing robot designs, thanks to the synergistic optimization of materials and structures.
Z badano trzy techniki w celu optymalizacji wydajności napędzanego śmigłem robota wspinaczkowego: i) optymalizacja materiałów przy użyciu laminatów na bazie wzmocnionego włóknem szklanym polimeru (GFRP) o trzech konfiguracjach — symetrycznej warstwie poprzecznej (0°/90°), antysymetrycznej warstwie poprzecznej (0°/90°) i antysymetrycznej warstwie kątowej (±45°), ii) optymalizacja topologii strukturalnej podwozia robota przy użyciu metod opartych na gęstości oraz iii) grubości laminatu (0,5–3,0 mm) i zawartości włókien (50–70 v%). Optymalną wydajność uzyskano dla antysymetrycznej konfiguracji warstwy kątowej 2,2 mm z zawartością włókien 60 v%, co skutkowało redukcją masy (6,8%). W połączeniu z topologicznie zoptymalizowaną konstrukcją podwozia (redukcja masy o 20,1%) cały system osiągnął 23,5% redukcję masy, co przekłada się na oszczędność energii (redukcja momentu obrotowego o 23,6% i redukcja ciągu o 17,3%) przy zachowaniu integralności struktury. Wyniki te wyznaczają nowy standard w dziedzinie energooszczędnych konstrukcji robotów wspinaczkowych, dzięki synergicznej optymalizacji materiałów i konstrukcji.
Czasopismo
Rocznik
Tom
Strony
455--466
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
- Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
autor
- Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
Bibliografia
- [1] Eich M., Bonnin‐Pascual F., Garcia‐Fidalgo E. et al.: Journal of Field Robotics 2014, 31(2), 319. https://doi.org/10.1002/rob.21498
- [2] Schmidt D., Berns K.: Robotics and Autonomous Systems 2013, 61(12), 1288. https://doi.org/10.1016/j.robot.2013.09.002
- [3] Grieco J.C., Prieto M., Armada M. et al.: “A six-legged climbing robot for high payloads”, Materials from 1998 IEEE International Conference on Control Applications, Trieste. Italy, September 1-4, 1998, p. 446. https://doi.org/10.1109/CCA.1998.728488
- [4] Hillenbrand C., Schmidt D., Berns K.: Advances in Mobile Robotics 2008, August 311. https://doi.org/10.1142/9789812835772_0038
- [5] Ye W., Huo T., Gong C. et al.: Robotica 2025, 43(2), 701. https://doi.org/10.1017/S0263574724002133
- [6] Kim S., Spenko M., Trujillo S. et al.: “Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbing robot”, Materials from 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, April 10-14, 2007, p. 1268. https://doi.org/10.1109/ROBOT.2007.363159
- [7] Wang B., Li P., Li P. et al.: Journal of Field Robotics 2025, 42(1), 97. https://doi.org/10.1002/rob.22402
- [8] Mahmood S.K., Bakhy S.H., Tawfik M.A.: IOP Conference Series: Materials Science and Engineering 2021, 1094, 012106. https://doi.org/10.1088/1757-899X/1094/1/012106
- [9] Zheng Z. Wang C., Hu X. et al.: Journal of Field Robotics 2025, early access. https://doi.org/10.1002/rob.22519
- [10] Runge J.M.: “A brief history of anodizing aluminum” in “The Metallurgy of Anodizing Aluminum”, Springer, Cham 2018. p. 65. https://doi.org/10.1007/978-3-319-72177-4_2
- [11] Fouly A., Almotairy S.M., Aijaz M.O. et al.: Crystals 2021, 11(6), 700. https://doi.org/10.3390/cryst11060700
- [12] Badran A.H., Alamro T., Bazuhair R.W. et al.: Nanomaterials 2022, 12(10), 1646. https://doi.org/10.3390/nano12101646
- [13] Rana R.S., Purohit R., Das S.: International Journal of Scientific and Research Publications 2012, 2(6), 1.
- [14] Zhang W., Xu J.: Materials and Design 2022, 221, 110994. https://doi.org/10.1016/j.matdes.2022.110994
- [15] Albahkali T., Fouly A., Alnaser I.A. et al.: Polymers 2023, 15(19), 3880. https://doi.org/10.3390/polym15193880
- [16] Fouly A., Taha M., Albahkali T. et al.: IEEE Access 2024, 12, 14787. https://doi.org/10.1109/ACCESS.2024.3352448
- [17] Fouly A., Daoush W.M., Elqady H.I. et al.: Friction 2024, 12, 2808. https://doi.org/10.1007/s40544-024-0940-1
- [18] Shang J., Sattar T., Chen S. et al.: Industrial Robot 2007, 34(6), 495. https://doi.org/10.1108/01439910710832093
- [19] Elbadawi M., Andrikopoulos G., Nikolakopoulos G. et al.: “Bio-inspired climbing robots in wet environments: Recent trends in adhesion methods and materials”, Materials from 2018 IEEE International Conference on Robotics and Biomimetics, Kuala Lumpur, Malaysia December 12-15, 2018, p. 2347. https://doi.org/10.1109/ROBIO.2018.8665184
- [20] Bian S., Xie D., Wei Y. et al.: “A wall climbing robot arm capable of adapting to multiple contact wall surfaces”, Materials from Intelligent Robotics and Applications, 12th International Conference, ICIRA 2019, Shenyang, China, August 8–11, 2019, p. 97-109. https://doi.org/10.1007/978-3-030-27532-7_9
- [21] Reddy J.N.: “Mechanics of laminated composite plates and shells. Theory and Analysis”, CRC Press, Boca Raton 2003. https://doi.org/10.1201/b12409
- [22] Barbero E.J.: “Introduction to Composite Materials Design”, CRC Press, Boca Raton 2010.
- [23] Zhong Y., Li Y., Xie Q. et al.: Applied Surface Science 2025, 681, 161495. https://doi.org/10.1016/j.apsusc.2024.161495
- [24] Lipp L.: “Visualization of Fiber Orientation in Glass Fiber Reinforced Polymers.” Bachelor of Science dissertation, Faculty of Informatics, TU Wien, 2018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c67fa8a9-f613-4123-bfd7-c6dbc3c54425
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.