Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The most acceptable way to prevent and eliminate negative phenomena arising from devastating landscapes is phytomelioration. To assess the suitability of the landfill’s surface for phytomelioration measures, it is necessary to determine the species composition, physiological stability, density, and completeness of the tree stand (in case of the tree species development) already developing as a result of natural overgrowth. The present work examines the ecological succession of three large urban landfills within the Western Forest Steppe of Ukraine – Lviv, Ternopil, and Lutsk. It was established that the maximum phytomass is characteristic of the gentle slopes of landfills with relatively stable moisture index, and developed soil, which gives reason to attribute the plant groups to the endoecogenesis stage while there are no garbage dumping processes. Three stages of overgrowth were identified for all landfills – syngenetic succession, initial endoecogenetic succession, and mature endoecogenetic succession. The taxonomic structure of the flora of the urban landfills of the Western Forest Steppe is represented by the divisions Magnoliophyta, Pinophyta, Polypodiophyta, Bryophyta, and the classes Magnoliopsida, Liliopsida, Pinopsida, Equisetopsida, Polytrichopsida. The phytomeliorative efficiency of vegetation at solid waste landfills shows that the surface of landfills in the Western Forest Steppe is dominated by stunted plants and the phytomelioration coefficient is low. Thus, the surface of the landfill is suitable for phytomelioration and reclamation works and landfill decommissioning. The phytomeliorative efficiency of vegetation at solid waste landfills shows that the surface of landfills in the Western Forest Steppe is dominated by stunted plants and the phytomelioration coefficient is low. Thus, the surface of the landfill is suitable for phytomelioration and reclamation works and landfill decommissioning.
Wydawca
Rocznik
Tom
Strony
225--233
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
- Educational and Research Institute of Civil Defence, Lviv State University of Life Safety, Kleparivska Str. 35, Lviv, 79007, Ukraine
autor
- Educational and Research Institute of Civil Defence, Lviv State University of Life Safety, Kleparivska Str. 35, Lviv, 79007, Ukraine
autor
- Educational and Research Institute of Civil Defence, Lviv State University of Life Safety, Kleparivska Str. 35, Lviv, 79007, Ukraine
autor
- Educational and Research Institute of Civil Defence, Lviv State University of Life Safety, Kleparivska Str. 35, Lviv, 79007, Ukraine
autor
- Doctoral Studies and Postgraduate Studies, Lviv State University of Life Safety, Kleparivska Str. 35, Lviv, 79007, Ukraine
Bibliografia
- 1. Adamcova D., Radziemska M., Ridoskova A., Barton S., Pelcova P., Elbi J., Kunicky J., Brtnicky M., Vaverkova M.D. 2017. Environmental assessment of the effects of a municipal landfill on the content and distribution of heavy metals in Tanacetum vulgare L. Chemosphere, 185, 1011–1018. http://dx.doi.org/10.1016/j.chemosphere.2017.07.060
- 2. Akanchise T., Boakye S., Borquaye L.S., Dodd M., Darko G. 2020. Distribution of heavy metals in soils from abandoned dump sites in Kumasi, Ghana. Scientific African, 10, e00614. https://doi.org/10.1016/j.sciaf.2020.e00614
- 3. Bégin Y., Sirois L., Meunier C. 2010. The effects of hydroelectric flooding on a reservoir’s peripheral forests and newly created forested Islands. Tree Rings and Natural Hazards. Advances in Global Change Research, 41, 241–256. https://doi.org/10.1007/978-90-481-8736-2_23
- 4. Businelli D., Massaccesi L., Said-Pullicino D., Gigliotti G. 2009. Long-term distribution, mobility, and plant availability of compost-derived heavy metals in a landfill covering soil. Science of the total environment, 407, 1426–1435. https://doi.org/10.1016/j.scitotenv.2008.10.052
- 5. Dan A, Oka M., Fujii Y., Soda S., Ishigaki T., Machimura T., Ike M. 2017. Removal of heavy metals from synthetic landfill leachate in lab-scale vertical flow constructed wetlands. Science of the Total Environment, 584–585, 742–750. https://doi.org/10.1016/j.scitotenv.2017.01.112
- 6. Deng Y., Englehardt J.D. 2006. Treatment of landfill leachate by the Fenton process. Water Research, 40(20), 3683–3694. https://doi.org/10.1016/j.watres.2006.08.009
- 7. Gautam M., Agrawal M. 2019. Identification of metal tolerant plant species for sustainable phytomanagement of abandoned red mud dumps. Applied Geochemistry, 104, 83–92. https://doi.org/10.1016/j.apgeochem.2019.03.020Heavey M. 2003. Low-cost treatment of landfill leachate using peat. Waste Management, 23(5), 447–454. https:// doi.org/10.1016/S0956-053X(03)00064-3
- 8. Kasassi A., Rakimbei P., Karagiannidis A., Zabaniotou A., Tsiouvaras K., Nastis A., Tzafeiropoulou K. 2008. Soil contamination by heavy metals: Measurements from a closed unlined landfill. Bioresource Technology, 99, 8578–8584. https://doi.org/10.1016/j.biortech.2008.04.010
- 9. Kucheriavyi V.P. 2003. Phytomelioration. Lviv, Ukraine, 520.
- 10. Kucheriavyi V.P. 2010. General ecology. Lviv, Ukraine, 520.
- 11. Kucheriavyi V.P. 2021. Urboecology. Novyi Svit2000, Ukraine, 460.
- 12. Kulikowska D., Klimiuk E. 2008. The effect of landfill age on municipal leachate composition. Bioresource Technology, 99(13), 5981–5985. https://doi.org/10.1016/j.biortech.2007.10.015
- 13. Malovanyy M., Moroz O., Popovych V., Kopiy M., Tymchuk I., Sereda A., Krusir G., Soloviy Ch. 2021. The perspective of using the open biological conveyor method for purifying landfill filtrates. Environmental Nanotechnology, Monitoring & Management, 16, 100611. https://doi.org/10.1016/j.enmm.2021.100611
- 14. Odnorih Z., Manko R., Malovanyy M., Soloviy K. 2020. Results of surface water quality monitoring of the western bug river Basin in Lviv Region. Journal of Ecological Engineering, 21(3), 18–26. https://doi.org/10.12911/22998993/118303
- 15. Oziegbe O., Oluduro A.O., Oziegbe E.J., Ahuekwe E.F., Olorunsola S.J. 2021. Assessment of heavy metal bioremediation potential of bacterial isolates from landfill soils. Saudi Journal of Biological Sciences, 28(7), 3948–3956. https://doi.org/10.1016/j.sjbs.2021.03.072
- 16. Popovych V., Bosak P., Dumas I., Kopystynskyi Yu., Pinder V. 2023. Ecological successions of phytocenoses in the process of formation of the phytomeliorative cover of landfills. IOP Conf. Series: Earth and Environmental Science, 1269, 012011. https://doi:10.1088/1755-1315/1269/1/012011
- 17. Popovych V.V., Malovanyy M.S., Prydatko O.V., Popovych N.P., Petlovanyi М.V., Korol K.A., Lyn A.S., Bosak P.V., Korolova O.G. 2021. Technogenic impact of acid tar storage ponds on the environment: a case study from Lviv, Ukraine. Ecologia Balkanica, 13(1), 35–44.
- 18. Renou S., Givaudan J.G., Poulain S., Dirassouyan F., Moulin P. 2008. Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150(3), 468–493. https://doi.org/10.1016/j.jhazmat.2007.09.077
- 19. Semenenko Y., Demchenko T., Pavlichenko A. 2020. Calculation of the maximum velocity of gravity flow in the pond-clarifier with higher aquatic plants. E3S Web of Conferences, 2nd International Conference Essays of Mining Science and Practice, RMGET 2020. EDP Sciences, 168 00061. https://doi.org/10.1051/e3sconf/202016800061
- 20. Skyba T., Popovych V. Dominik A., Rudenko D., Bosak, P. 2020. Dose rate of the landfills of north-west podillya (Ukraine). 20th International Multidisciplinary Scientific Geoconference: Ecology, Economics, Education and Legislation, SGEM 2020 5.1, 259–266. https://doi.org/10.5593/sgem2020/5.1/s20.033
- 21. Suchecka T., Lisowski W., Czykwin R., Piatkiewicz W. 2006. Landfill leachate: water recovery in Poland. Filtration & Separation, 43(5), 34–36. https://doi.org/10.1016/S0015-1882(06)70891-6
- 22. Sukopp H. 1990. Statocology. The example of Berlin, Germany. 455.
- 23. Tymchuk I., Malovanyy M., Shkvirko O., Chornomaz N., Popovych O., Grechanik R., Symak D. 2021. Review of the global experience in reclamation of disturbed lands. Inzynieria Ekologiczna, 22(1), 24–30. https://doi.org/10.12912/27197050/132097
- 24. Tymchuk I., Shkvirko O., Sakalova H., Malovanyy M., Dabizhuk T., Shevchuk O., Matviichuk O., Vasylinych T. 2020. Wastewater a source of nutrients for crops growth and development. Journal of Ecological Engineering, 21(5), 88–96. https://doi.org/10.12911/22998993/122188
- 25. Uygur A., Kargı F. 2004. Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor. Journal of Environmental Management, 71(1), 9–14. https://doi.org/10.1016/j.jenvman.2004.01.002
- 26. Xiaoli C., Shimaoka T., Xianyan C., Qiang G., Youcai Z. 2007. Characteristics and mobility of heavy metals in an MSW landfill: Implications in risk assessment and reclamation. Journal of Hazardous Materials, 144(1–2), 485–491. https://doi.org/10.1016/j.jhazmat.2006.10.056
- 27. Ziemba S. 1998. Dilemmas of ecological safety. KUL Publishing House, Poland, 253.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c678b80f-f66c-4b94-ab4a-5a8a37b088b4