Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this research work, the finite element software, ABAQUS is used to study by simulations the influence of form defect on mechanical behavior of a shrink-fitted assembly presenting internal radial cracks. Under the action of contact pressure induced by the tightening between two cylinders, these cracks resulting from incorrect assembly operations or materials elaboration defect, can be harmful to the assembly. Various simulations were carried out in two modeling cases, taking into account the geometric parameters of defect (amplitude Df), of cylinders (thickness t) and of cracks (length a, ratio a/t). Another important parameter such as the tightening was also considered in the modeling. The first modeling relates to the case with defect, external cylinder presents an oval (elliptical) form defect and internal radial cracks. The other concerns the perfect equivalent case (without form defect). The comparison of results obtained by two models shows that form defect modifies the uniformity of equivalent stresses distribution in cylinders and increases the value of stress intensity factor (SIF) KI in cracks. Defect amplitude and tightening significantly influence the value of equivalent stress and that of stress intensity factor (SIF) KI.
Rocznik
Tom
Strony
40--51
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
- Laboratory of Energetics, Mechanics and Engineering, Faculty of Technology, University M’hamed Bougara, 35000 Boumerdes, ALGERIA
autor
- Motor Dynamics and Vibroacoustics Laboratory, Faculty of Technology, University M’hamed Bougara, 35000 Boumerdes, ALGERIA
autor
- Laboratory of Energetics, Mechanics and Engineering, Faculty of Technology, University M’hamed Bougara, 35000 Boumerdes, ALGERIA
Bibliografia
- [1] Timoshenko SP. (1956): Strength of Materials. Part 2, Advanced Theory and Problems, Third Ed.– Van Nostrand, Princeton.
- [2] NF E22-620 et E22-622 (1984): Assemblages frettés sur portée cylindrique.– AFNOR, Paris la Défense.
- [3] Given U. (1991): The shrink fit with elastic-plastic hub exhibiting variable thickness.– Acta Mechanica, vol.89, pp.65-72.
- [4] Özel A., Temiz S., Aydin M.D. and Şen S. (2005): Stress analysis of shrink-fitted joints for various fit forms via finite element method.– Materials and Design, vol.26, pp.281-289.
- [5] Fontaine J.F. and Siala I.E. (1998): Three-dimensional modelling of a shrinkage fit taking into account the Form defects.– European Journal of Mechanics - A/Solids, Elsevier, vol.17, No.1, pp.107-119.
- [6] Laghzale N., Bouzid A. and Elgharad A. (2016): Analytical modelling of elastic-plastic interference fit joints.– International Review on Modelling and Simulations (IREMOS), vol.9, No.3, pp.191-199.
- [7] Esposito L. and Bruno M. and Bertocco A. (2020): Analytical formulation of the contact pressure evolution for interference joints under creep regime.– International Journal of Pressure Vessels and Piping, vol.185, 104126.
- [8] Kirkhope K.J., Bell R. and Kirkhope J. (1991): Stress intensity factors for single and multiple semi-elliptical surface cracks in pressurized thick-walled cylinders.– International Journal of Pressure Vessels and Piping, vol.47, No.2, pp.247-257.
- [9] Bahloul A., Bouraoui C. and Boukharouba T. (2017): Prediction of fatigue life by crack growth analysis.– The International Journal of Advanced Manufacturing Technology, vol.91, pp.4009-4017.
- [10] Huh N.S., Shim D.J., Choi S. and Park K.-B. (2008): Stress intensity factors and crack opening displacements for slanted through-wall cracks in pressurized pipes.– Fatigue & Fracture of Engineering Materials & Structures, vol.31, No.6, pp.428-440.
- [11] Al-Moayed O.M. , Kareem A.K. , Ismail A.E. , Jamian S. and Nemah M.N. (2019): Distribution of mode I stress axial intensity factors for single circumferential semi-elliptical crack in thick cylinder.– International Journal of Integrated Engineering. vol.11 No.7, pp.102-111.
- [12] Predan J., Močilnik V. and Gubeljak N. (2013): Stress intensity factors for circumferential semi-elliptical surface cracks in a hollow cylinder subjected to pure torsion.– Engineering Fracture Mechanics. vol.105, pp.152-168.
- [13] Nabavi S.M. and Ghajar R. (2010): Analysis of thermal stress intensity factors for cracked cylinders using weight function method.– International Journal of Engineering Science, vol.48, No.12, pp.1811-1823.
- [14] Jun Ying, Zhaojun Yang, Chuanhai Chen, Xiaoxu Li, Hailong Tian (2019): Stress intensity factors for thick- walled cylinder under interference fit.– 4th International Conference on System Reliability and Safety (ICSRS), pp.359-363.
- [15] Al-Moayed O.M. , Kareem A.K. , Ismail A. E. , Jamian S. , Nemah M. N. (2020): Influence coefficients for a single superficial cracked thick cylinder under torsion and bending moments.– International Journal of Integrated Engineering, vol.12, No.4, pp.132-144.
- [16] Xu Bingye, Liu Xinsheng. (1995): Applied Elasticity and Plasticity.– Tsinghua University Press, pp.236-242.
- [17] Kirkhope K. J., Bell R. and Kirkhope J. (1990): Stress intensity factors equations for single and multiple cracked pressurized thick-walled cylinders.– International Journal of Pressure Vessels and Piping, vol.41, No.1, pp.103-111.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6715172-56e6-48e3-8444-6c01f21cead8