PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of Mn(II) on tetracycline degradation by a selected strain Burkholderia sp.

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Removal of residual tetracycline (TC) in the environment is an important issue for pollution control. In this study, a TC-degrading strain named JX_1 was isolated from the soil around an industrial park, the strain was identified as Burkholderia sp. by 16s rDNA sequencing analysis. The effects of various factors on TC degradation by the strain were studied, results indicated that the inoculation amounts and liquid volume had little effect on TC degradation rate. However, the degradation rate of TC by strain increased with the increase of pH, and the residual concentration increased gradually with the initial TC concentration increased. The degradation rate of 125 mg/L TC by strain JX_1 was 75.76 % under the conditions of temperature 37 °C, 2 mL inoculation amount and 200 mL liquid volume. Under the same conditions, the degradation rate of TC was increased to 91.39 % with the addition of 0.75 g/L MnSO4, indicating that Mn(II) could improve the degradation rate of TC by strain JX_1 to a certain extent.
Rocznik
Strony
417--427
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
  • School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China, phone +86-551-62901524, fax +86-551-62901523
  • School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China, phone +86-551-62901524, fax +86-551-62901523
autor
  • School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China, phone +86-551-62901524, fax +86-551-62901523
Bibliografia
  • [1] Huang X, Zhang X, Feng F, Xu X. Biodegradation of tetracycline by the yeast strain Trichosporon mycotoxinivorans XPY-10. Prep Biochem Biotechnol. 2016;46:15-22. DOI: 10.1080/10826068.2014.970692.
  • [2] Daghrir R, Drogui P. Tetracycline antibiotics in the environment: a review. Environ Chem. 2013;11:209-27. DOI: 10.1007/s10311-013-0404-8.
  • [3] Al-Hashimi O, Hashim K, Loffill E, Nakouti I, Faisal AAH, Čebašek TM. Kinetic and equilibrium isotherm studies for the removal of tetracycline from aqueous solution using engineered sand modified with calcium ferric oxides. Environments. 2023;10:7. DOI: 10.3390/environments10010007.
  • [4] Delius J, Emmerich M, Özyurt V, Hamscher G. Biotransformation of tetracyclines by fungi: Challenges and future research perspectives. J Agric Food Chem. 2022;70:1454-60. DOI: 10.1021/acs.jafc.1c05121.
  • [5] Chen X, Yang Y, Ke Y, Chen C, Xie S. A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect. Sci Total Environ. 2022;814:152852. DOI: 10.1016/j.scitotenv.
  • [6] Picon D, Vergara-Rubio A, Estevez-Areco S, Cerveny S, Goyanes S. Adsorption of methylene blue and tetracycline by zeolites immobilized on a PBAT electrospun membrane. Molecules. 2023;28:1-17. DOI: 10.3390/molecules28010081.
  • [7] Li Y, Wang H, Liu X, Zhao G, Sun Y. Dissipation kinetics of oxytetracycline, tetracycline, and chlortetracycline residues in soil. Environ Sci Pollut Res Int. 2016;23:13822-31. DOI: 10.1007/s11356-016-6513-8.
  • [8] Santas-Miguel V, Rodriguez-Gonzalez L, Nunez-Delgado A, Alvarez-Rodriguez E, Diaz-Ravina M, Arias-Estévez M, et al. Soil bacterial community tolerance to three tetracycline antibiotics induced by Ni and Zn. Span J Soil Sci. 2023;13:10799. DOI: 10.3389/sjss.2023.10799.
  • [9] Li Y, Fang J, Yuan X, Chen Y, Yang H, Fei X. Distribution characteristics and ecological risk assessment of tetracyclines pollution in the Weihe River, China. Int J Environ Res Public Health. 2018;15:1803. DOI: 10.3390/ijerph15091803.
  • [10] Javid A, Mesdaghinia A, Nasseri S, Mahvi AH, Alimohammadi M, Gharibi H. Assessment of tetracycline contamination in surface and groundwater resources proximal to animal farming houses in Tehran, Iran. J Environ Health Sci Eng. 2016;14:4. DOI: 10.1186/s40201-016-0245-z.
  • [11] Dai Y, Liu M, Li J, Yang S, Sun Y, Sun Q, et al. A review on pollution situation and treatment methods of tetracycline in groundwater. Sep Sci Technol. 2019;55:1-17. DOI: 10.1080/01496395.2019.1577445.
  • [12] Pan M, Lyu T, Zhan L, Matamoros V, Angelidaki I, Cooper M, et al. Mitigating antibiotic pollution using cyanobacteria: Removal efficiency, pathways and metabolism. Water Res. 2021;190:116735. DOI: 10.1016/j.watres.2020.116735.
  • [13] Liao Q, Rong H, Zhao M, Luo H, Chu Z, Wang R. Interaction between tetracycline and microorganisms during wastewater treatment: A review. Sci Total Environ. 2021;757:143981. DOI: 10.1016/j.scitotenv.2020.143981.
  • [14] Xu H, Chen Z, Wu X, Zhao L, Wang N, Mao D, et al. Antibiotic contamination amplifies the impact of foreign antibiotic-resistant bacteria on soil bacterial community. Sci Total Environ. 2021;758:143693. DOI: 10.1016/j.scitotenv.2020.143693.
  • [15] Zhang L, Xin Z, Fei X, Luo H, Li H, Lu B, et al. Study on adsorption of tetracycline by red mud-based ceramsite. J Water Supply: Res Technol Aqua. 2019;68:39-50. DOI: 10.2166/aqua.2018.100.
  • [16] Ait Hamoudi S, Hamdi B, Brendle J. Tetracycline removal from water by adsorption on geomaterial, activated carbon and clay adsorbents. Ecol Chem Eng S. 2021;28:303-28. DOI: 10.2478/eces-2021-0021.
  • [17] Gomez E, Fons A, Cestaro R, Serra A. Enhanced activation of peroxymonosulfate for tetracycline degradation using CoNi-based electrodeposited films. Nanomaterials. 2023;13:790. DOI: 10.3390/nano13050790.
  • [18] Cestaro R, Philippe L, Serra A, Gomez E, Schmutz P. Electrodeposited manganese oxides as efficient photocatalyst for the degradation of tetracycline antibiotics pollutant. Chem Eng J. 2023;462:142202. DOI: 10.1016/j.cej.2023.142202.
  • [19] Wang C, Lin C, Liao G. Degradation of antibiotic tetracycline by ultrafine-bubble ozonation process. J Water Process Eng. 2020;37:101463. DOI: 10.1016/j.jwpe.2020.101463.
  • [20] Tan H, Kong D, Ma Q, Li Q, Zhou Y, Jiang X, et al. Biodegradation of tetracycline antibiotics by the yeast strain Cutaneotrichosporon dermatis M503. Microorganisms. 2022;10:565. DOI: 10.3390/microorganisms10030565.
  • [21] Chen X, Shen W, Chen J, Zhu Y, Chen C, Xie S. Tetracycline biotransformation by a novel bacterial strain Alcaligenes sp. T17. Sci Total Environ. 2022;832:155130. DOI: 10.1016/j.scitotenv.2022.155130.
  • [22] Chang Q, Ali A, Su J, Wen Q, Bai Y, Gao Z. Simultaneous removal of nitrate, manganese, and tetracycline by Zoogloea sp. MFQ7: Adsorption mechanism of tetracycline by biological precipitation. Bioresour Technol. 2021;340:125690. DOI: 10.1016/j.biortech.2021.125690.
  • [23] Tan Z, Abdoulahi M, Yang X, Zhu Y, Gong B, Li Y. Carbon source type can affect tetracycline removal by Pseudomonas sp. TC952 through regulation of extracellular polymeric substances composition and production. Sci Total Environ. 2022;804:149907. DOI: 10.1016/j.scitotenv.2021.149907.
  • [24] Shi Y, Lin H, Ma J, Zhu R, Sun W, Lin X, et al. Degradation of tetracycline antibiotics by Arthrobacter nicotianae OTC-16. J Hazard Mater. 2021;403:123996. DOI: 10.1016/j.jhazmat.2020.123996.
  • [25] Bhatt P, Jeon C, Kim W. Tetracycline bioremediation using the novel Serratia marcescens strain WW1 isolated from a wastewater treatment plant. Chemosphere. 2022;298:134344. DOI: 10.1016/j.chemosphere.2022.134344.
  • [26] Shobnam N, Sun Y, Mahmood M, Loffler F, Im J. Biologically mediated abiotic degradation (BMAD) of bisphenol A by manganese-oxidizing bacteria. J Hazard Mater. 2021;417:7. DOI: 10.1016/j.jhazmat.2021.125987.
  • [27] Li H, Tang Y, Wu Y, Wang Y, Huang H, Huang Y, et al. Bio-immobilization of soluble Mn(II) in aqueous solution with co-occurred Mn(II)-oxidizing bacteria: Facilitation or inhibition? J Environ Chem Eng. 2021;9:106448. DOI: 10.1016/j.jece.2021.106448.
  • [28] Cai Y, He J, Zhang J, Li J. Antibiotic contamination control mediated by manganese oxidizing bacteria in a lab-scale biofilter. J Environ Sci. 2020;98:47-54. DOI: 10.1016/j.jes.2020.05.024.
  • [29] Leng Y, Bao J, Chang G, Zheng H, Li X, Du J, et al. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1. J Hazard Mater. 2016;318:125-33. DOI: 10.1016/j.jhazmat.2016.06.053.
  • [30] Peng X, Cao J, Xie B, Duan M, Zhao J. Evaluation of degradation behavior over tetracycline hydrochloride by microbial electrochemical technology: Performance, kinetics, and microbial communities. Ecotox Environ Safety. 2020;188:7. DOI: 10.1016/j.ecoenv.2019.109869.
  • [31] Wacławek S. Do we still need a laboratory to study advanced oxidation processes? A review of the modelling of radical reactions used for water treatment. Ecol Chem Eng S. 2021;28:11-28. DOI: 10.2478/eces-2021-0002.
  • [32] Wang Q, Li X, Yang Q, Chen Y, Du B. Evolution of microbial community and drug resistance during enrichment of tetracycline-degrading bacteria. Ecotox Environ Safety. 2019;171:746-52. DOI: 10.1016/j.ecoenv.2019.01.047.
  • [33] Li X, Gu A, Zhang Y, Xie B, Li D, Chen J. Sub-lethal concentrations of heavy metals induce antibiotic resistance via mutagenesis. J Hazard Mater. 2019;369:9-16. DOI: 10.1016/j.jhazmat.2019.02.006.
  • [34] Chen S, Li X, Sun G, Zhang Y, Su J, Ye J. Heavy metal induced antibiotic resistance in bacterium LSJC7. Int J Mol Sci. 2015;16:23390-404. DOI: 10.3390/ijms161023390.
  • [35] Sun F, Xu Z, Fan L. Response of heavy metal and antibiotic resistance genes and related microorganisms to different heavy metals in activated sludge. J Environ Manage. 2021;300:113754. DOI: 10.1016/j.jenvman.2021.113754.
  • [36] Bai Y, Su J, Wen Q, Li G, Xue L, Huang T. Removal of tetracycline by denitrifying Mn(II)-oxidizing bacterium Pseudomonas sp. H117 and biomaterials (BMO and MBMO): Efficiency and mechanisms. Bioresour Technol. 2020;312:123565. DOI: 10.1016/j.biortech.2020.123565.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6707313-583f-4395-989a-23cbdee90fde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.