PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dental tribology: a systems approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This article presents the new system approach for the biotribological description of the stomatognathic system, with particular emphasis on one of its subsystems, the dental organ. Methods: The peculiarity of the dental organ is emphasised, associated with a specific autonomic environment, next to the external environment, resulting from the impact of the organism on the dental organ. The autonomic environment increases the number of relations between elements in the dental organ and hinders its examination. Results: The characteristics of the dental organ are described. Its main elements, their properties, and the relationships between them are identified, and the system’s functions, inputs and outputs are presented. The systems approach addresses these difficulties, enabling the analysis of the dental organ and its tribological characteristics. Conclusions: The dental organ has an “autonomic” environment, which significantly increases the number of tribological relationships and complicates their analysis. Knowledge of the tribological attributes of the dental organ can be useful in studying detailed aspects of the function of the dental organ. The specific features of the analysed system and the uniqueness of its structure necessitate the use of appropriate methodology for testing the tribological properties.
Rocznik
Strony
15--32
Opis fizyczny
Bibliogr. 133 poz., rys., tab.
Twórcy
  • Białystok University of Technology, Faculty of Mechanical Engineering, Institute of Biomedical Engineering, Białystok, Poland
Bibliografia
  • [1] VON BERTALANFFY L., General System Theory: Foundations, Development, Applications, George Braziller, New York 1968.
  • [2] TOTOSY DE ZEPETNEK S., SYWENKY I., The Systemic and Empirical Approach to Literature and Culture as Theory and Application, University of Alberta, Edmonton 1997.
  • [3] CZICHOS H., Tribology: A systems approach to the science and technology of friction, lubrication and wear. Tribology series, 1, Elsevier, Amsterdam–Oxford–NY 1978.
  • [4] EBELING W., Formation of Structures in the Case of Irreversible Processes, Izdatel’stvo Mir, Moscov 1979 (in Russian).
  • [5] GERSHMAN I.S., BUSHE N.A., Elements of Thermodynamics and Self-organization during Friction, [in:] G.S., Fox-Rabinovich, G.E. Totten (Eds.), Self-organization During Friction: Advanced Surface-engineered Materials and Systems Design, Taylor & Francis, London–New York 2007, 13–56.
  • [6] CZICHOS H., Application of Technical Diagnostic, [in:] H. Czichos (ed.), Handbook of Technical Diagnostics: Fundamentals and Application to Structures and Systems, Springer, Heidelberg–New York–Dordrecht–London, 2013, 11–22.
  • [7] ROW W.B., MARINESCU I.D., OHMORI H., DIMITROV B., Tribology of Abrasive Machinning Process, 2nd ed. Elsevier, Waltham–Oxford 2013.
  • [8] SZCZEREK M., Systematisation of tribological tests, [in:] M. Szczerek, M. Wiśniewski (Eds.), Tribology and Tribotechnics, Wyd. Instytutu Technologii Eksploatacji, Radom 2000 (in Polish).
  • [9] PERGAMALIAN A., RUDY T., ZAKI H.S., GRECO C., The association between wear facets, bruxism, and severity of facial pain in patients with temporomandibular disorders, J. Prosthet. Dent., 2003, 90, 194–200.
  • [10] JOHN M.T., FRANK H., LOBBEZZO F., DRANGHSHOLT M., DETTE K.-E., No associations between incisal tooth wear and temporomandibular disorders, J. Prosthet. Dent., 2002, 87, 197–203.
  • [11] SAJEWICZ E., Dental organ as a tribological system, XIV Domestic Science Conference, Bicybernetics and Biomedical Engineering, V1, Częstochowa, 2005, 137–142 (in Polish).
  • [12] TEN CATE A.R., Oral Histology. Development, Structure, and Function, Mosby Company, Saint Louis–Toronto–London 1980.
  • [13] SMITH A.J., CASSIDY N., PERRY H., BEGUE-KIRN C., RUCH J.-V., LESOT H., Reactionary dentinogenesis, Int. J. Del. Biol., 1995, 39, 273–280.
  • [14] HELAND M.M., Anatomy and Function of the Temporomandibular Joint, The Journal of Orthopaedic and Sports Physical Therapy, 1980, 1, 145–152.
  • [15] HOELBER C., DEVAUX M.-F., KARINTHI A., BELLEVILLE C., BARRY J.-L., Particle size of solid food after human mastication and in vitro simulation of oral breakdown, Int. J. Food Sci. Nutr., 2000, 51, 353–366.
  • [16] LUCAS P.W., PRINZ J.F., AGRAWAL K.R., BRUCE I.C., Food physics and oral physiology, Food Qual. Pref., 2002, 13, 203–213.
  • [17] MÄNTYVAARA J. et al., Altered control of submaximal bite force during bruxism in humans, Eur. J. Appl. Physiol., 1999, 79, 325–330.
  • [18] MURPHY T.R., The timing and mechanism of the human masticatory stroke, Arch. Oral Biol., 1965, 10 (6), 981–993.
  • [19] NEIL D.J., KYDD W.L., NAIRN R.I., WILSON J., Functional loading of the dentition during mastication, J. Prosthet. Dent., 1989, 62, 218–228.
  • [20] SAJEWICZ E., KULESZA Z., A new tribometer for friction and wear studies of dental materials and hard tooth tissue, Tribology Int. 2007, 40, 885–895.
  • [21] KLIMUSZKO E., ORYWAL K., SIERPINSKA T., SIDUN J., GOLEBIEWSKA M., Evaluation of calcium and magnesium contents in tooth enamel without any pathological changes: in vitro preliminary study, Odontology, 2018, 106, 369–376.
  • [22] WHELTON H.P., SPENCER A.J., DO L.G., RUGG-GUNN A.J., Fluoride revolution and dental caries: Evolution of policies for global use, J. Dent. Res., 2019, 98, 837–846.
  • [23] SAKAE T., SUZUKI K., KOZAWA Y., A short review of studies on chemical and physical properties of enamel cristallites, [in:] W. Von Koenigswald, P.M. Sanders (Eds.), A.A. Balkema, Rotterdam–Brookfield 1997.
  • [24] LACRUZ R.S., HABELITZ S., WRIGHT J.T., PAINE M.L., Dental enamel formation and implications for oral health and disease, Physiol. Rev., 2017, 97, 939–993.
  • [25] ZAMUDIO-ORTEGA C.M., CONTRERAS-BULNES R., SCOUGALL--VILCHIS R.J., MORALES-LUCKIE R.A., OLEA-MEJÍA O.F., RODRÍGUEZ-VILCHIS L.E. et al., Morphological, chemical and structural characterisation of deciduous enamel: SEM, EDS, XRD, FTIR and XPS analysis, Eur. J. Paediatr. Dent., 2014, 15, 275–80.
  • [26] KEREBEL B., DACULSI G., KEREBEL L.M., Ultrastructural studies of enamel crystallites, J. Dent. Res., 1979, 57, 306–312.
  • [27] CUY J.L., MANN A.B., LIVI K.J., TEAFORD M.F., WEIHS T.P., Nanoindentation mapping of the mechanical properties of human molar tooth enamel, Arch. Oral Biol., 2002, 47, 281–291.
  • [28] LOW I.-M., Dept-profiling of crystal structure, texture, and microhardness in a functionally graded tooth enamel, J. Am. Ceram. Soc., 2004, 87, 2125–2131.
  • [29] ZHOU Z.R., ZHENG J., Oral tribology, Proc. I. Mech. E., Part J, 2006, 220, 739–754.
  • [30] HABELITZ S., MARSHALL S.J., MARSHALL JR G.W., BALOOCH M., Mechanical properties of human dental enamel on the nanometer scale, Arch. Oral Biol., 2001, 46, 173–183.
  • [31] ANG S.F., SAADATMAND M., SWAIN M.V., KLOCKE A., SCHNEIDER G.A., Comparison of mechanical behaviors of enamel rod and interrod regions in enamel, J. Mat. Res., 2012, 27, 448–456.
  • [32] MAHONEY E.K., ROHANIZADEH R., ISMAIL F.S.M., KILPATRICK N.M., SWAIN M., Mechanical properties and microstructure of hypomineralised enamel of permanent teeth, Biomaterials, 2004, 25, 5091–5100.
  • [33] POOLTHONG S., Determination of the mechanical properties of enamel, dentin and cementum by an ultra micro-indentation system, PhD Thesis, University of Sydney, Sydney 1998.
  • [34] GE J., CUI F.Z., WANG X.M., FENG H.L., Property variations in the prism and the organic sheath within enamel by nanoindentation, Biomaterials, 2005, 26, 3333–3339.
  • [35] BARBOUR M.E., PARKER D., JANDT K.D., Enamel dissolution as a function of solution degree of saturation with respect to hydroxyapatite: a nanoindentation study, Colloid Interface Sci., 2003, 263, 9–14.
  • [36] GUTIÉRREZ-SALAZAR M.P., REYES-GASGA J., Microhardness and chemical composition of human tooth, Mater Res., 2003, 6, 367–373.
  • [37] WHITE S.N. et al., Biological organization of hydroxyapatite crystallites into a fibrous continuum toughness and control anisotropy in human enamel, J. Dent. Res., 2001, 80, 321–326.
  • [38] GALO R., GIAMATEI CONTENTE M.M.M., GALAFASSI D., BORSATTO M.C., Hardness and modulus of elasticity of primary and permanent teeth after wear against different dental materials, Eur. J. Dent., 2015, 9, 587–593.
  • [39] MEREDITH N., SHERRIFF M., SETCHEL D.J., SWANSON S.A.V., Measurement of the microhardness and Young’s modulus of human enamel and dentine using an indentation technique, Arch. Oral Biol., 1996, 41, 539–545.
  • [40] FONG H., SARIKAYA M., WHITE S.N., SNEAD M.L., Nanomechanical profiles across dentine-enamel junction of human incisor teeth, Mater Sci. Eng., 2000, 7, 119–128.
  • [41] WIECZOREK W., LOSTER J., RYNIEWICZ W., RYNIEWICZ A.M., Dentinogenesis imperfecta – hardness and Young’s modulus of teeth, Acta Bioeng. Biomech., 2013, 15, 65–69.
  • [42] SHORTALL A.C., HU X.Q., MARQUIS P.M., Potential countersample materials for in vitro simulation wear testing, Dent. Mater., 2002, 18, 246–254.
  • [43] XU H.H.K. et al., Indentation damage and mechanical properties of human enamel and dentine, J. Dent. Res., 1998, 77, 472–480.
  • [44] MACHADO C., LACEFIELD W., CATLEDGE A., Human enamel nanohardness, elastic modulus and surface integrity after beverage contact, Braz. Dent. J., 2008, 19, 68–72.
  • [45] TYLDESLEY W.R., The mechanical properties of human enamel and dentine, Brit. Dent. J., 1959, 106, 259–278.
  • [46] CREIG R.G., PEYTON F.A., Elastic and mechanical properties of dentine, J. Dent. Res., 1958, 37, 710–718.
  • [47] ZAYTSEV D., Mechanical properties of human enamel under compression: On the feature of calculations, Mat. Sc. Eng. C. Mater. Bio. Appl., 2016, 62, 518–526.
  • [48] KAPUR R., The use of scanning acoustic microscopy to study the microstructural properties of the dentin/enamel junction, B.S. Project (Katz J.L. Advisor), Department of Biomedical Engineering, Case Western Reserve University 1999.
  • [49] SPEARS I.R., A three-dimensional finite element model of prismatic enamel: a re-appraisal of the data on the Young’s modulus of enamel, J. Dent. Res., 1997, 76, 1690–1697.
  • [50] POVOLO F., HERMIDA É.B., Measurement of the elastic modulus of dental pieces, J. Alloys Comp., 2000, 310, 392–395.
  • [51] BALOOCH G.W. et al., Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth, J. Biomech., 2004, 37, 1223–1232.
  • [52] POPOWICS T.E., RENSENBERG J.M., HERRING S.W., Enamel microstructure and microstrain in the fracture of human and pig molar cusps, Arch. Oral Biol., 2004, 49, 595–605.
  • [53] POPOWICS T.E., RENSENBERG J.M., HERRING S.W., The fracture behaviour of human and pig molar cusp, Arch. Oral Biol., 2004, 46, 1–12.
  • [54] GIANNINI M., SOARES C.J., CARVALHO R.M., Ultimate tensile strength of tooth structures, Dent. Mater., 2004, 20, 322–329.
  • [55] CHAI H., On mechanical properties of tooth enamel under spherical indentation, Acta Biomater., 2014, 10, 4852–4860.
  • [56] CAVALLI V., GIANNINI M., CARVALHO R.M., Effect of carbamide peroxide bleaching agents on tensile strength of human enamel, Dent. Mat., 2004, 20, 733–739.
  • [57] TYLDESLEY W.R., The mechanical properties of human enamel and dentine, Brit. Dent. J., 1959, 106, 259–278.
  • [58] STANFORD J.W., WEIGEL K.V., PAFFENBARGER G.C., SWEENEY W.T., Compression properties of human enamel and dentine, J. Am. Dent. Assoc., 1960, 60, 746–756.
  • [59] TOPARLI M., GÖKAY N., AKSOY T., Analysis of restored maxillary second premolar tooth by using three-dimensional finite element method, J. Oral Rehabil., 1999, 26, 157–164.
  • [60] FERRACANE J.L., Materials in Dentistry, 2nd ed., Lippincott, Williams & Wilkins, Philadelphia 2001.
  • [61] ZAYTSEV D., PANFILOV P., Deformation behaviour of human enamel under diametral compression, Mat. Let., 2014, 136, 130–132.
  • [62] GARRIDO M.A., GIRÁLDEZ I., CEBALLOS L., RODRÍGUEZ J., On the possibility of estimating the fracture toughness of enamel, Dent. Mat., 2014, 30, 1224–1233.
  • [63] YAHYAZADEHFAR M., BAJAJ D., AROLA D., Hidden contribution of enamel rods on the fracture resistance of human teeth, Acta Biomater., 9, 4806–4814.
  • [64] STAINES M.P., ROBINSON W.H., HOOD J.A.A., Spherical indentation of tooth enamel, J. Mat. Sc., 1981, 6, 2551–1556.
  • [65] ANG S.F., SCHOLZ T., SCHNEIDER G.A., Determination of the elastic/plastic transition of human enamel by nanoindentation, Mat. Sc., 2009, 25, 1403–1410.
  • [66] PIOCH T., STAEHLE H.J., Experimental investigation of the shear strengths of teeth in the region of the dentinoenamel junction, Quintessence Int., 1996, 27, 711–714.
  • [67] SUCHANEK W., YOSHIMURA M., Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, J. Mater. Sc., 1997, 13, 94–117.
  • [68] ZAYTSEV D., PANFILOV P., Anisotropy of mechanical properties of human tooth enamel, Mater. Let., 2015, 159, 428–431.
  • [69] MEIRELES A.B., BASTOS F.S., CORNACCHIA T.P., ALVERNAZ FERREIRA J., LAS CASAS E.B., Enamel wear characterization based on a skewness and kurtosis surface roughness evaluation, Biotribology, 2015, 1–2, 35–41.
  • [70] LAS CASAS E.B., BASTOS F.S., GODOY G.C.D., BUONO V.T.L., Enamel wear and surface roughness characterization using 3D profilometry, Tribol. Int., 2008, 41, 1232–1236.
  • [71] MEREDITH L., FARELLA M., LOWREY S., CANNON R.D., MEIA L., Atomic force microscopy analysis of enamel nanotopography after interproximal reduction, Am. J. Orthod. Dentofacial Orthop., 2017, 151, 750–757.
  • [72] WORSCHECH C.C., RODRIGUES J.A., MARCONDES MARTINS L.R., AMBROSANO G.M., In vitro evaluation of human dental enamel surface roughness bleached with 35% carbamide peroxide and submitted to abrasive dentifrice brushing, Pesqui Odontol. Bras., 2003, 17, 342–348.
  • [73] PACHALY R., POZZOBON R.T., Analysis of surface roughness of human enamel exposed to bleaching agent and submitted to brushing, Acta Odontol. Latinoam., 2012, 25, 59–66.
  • [74] MIKULEWICZ M., SZYMKOWSKI J., MATTHEWS-BRZOZOWSKA T., SEM and profilometric evaluation of enamel surface after air rotor stripping – an in vitro study, Acta Bioeng. Biomech., 2007, 9, 11–17.
  • [75] WEIDMANN S.M., WEATHERELL J.A., HAMM S.M., Variations of enamel density in sections of human teeth, Arch. Oral Biol., 1967, 12, 85–97.
  • [76] NYLANDER T., ARNEBRANDT T., GLANTZ P.-O., Interactions between films salivary adsorbed on mica surfaces, Colloids Surfaces A., 1997, 129–130, 339–344.
  • [77] TSUJIMOTO A., IWASA M., SHIMAMURA Y., MURAYAMA R., TAKAMIZAWA Y., MIYAZAKI M., Enamel bonding of singlestep self-etch adhesives: Influence of surface energy characteristics, J. Dent., 2010, 38, 123–130.
  • [78] NAGURA Y., TSUJIMOTO A., BARKMEIER W.W., WATANABE H., JOHNSON W.W., TAKAMIZAWA T., LATTA M.A., MIYAZAKI M., Relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives, Eur. J. Oral Sci., 2018, 126, 135–145.
  • [79] COMBE E.C., Notes of Dental Materials, 6th ed., Churchill Livingstone 1992.
  • [80] LIN M., LIU Q.D., KIM T., XU F., BAI B.F., LU T.J., A new method for characterization of thermal properties of human enamel and dentine: Influence of microstructure, Infr. Phys. Technol., 2010, 53, 457–463.
  • [81] KARPE B., VODLAN M., KOPAČ I., BUDAK I., NAGODE A., PAVLIČ A., PUŠKAR T., KOSEC B., Advanced Technologies and Materials, 2018, 43, 7–10.
  • [82] XU H.C., LIU W.Y., WANG T., Measurement of thermal expansion coefficient of human teeth, Aust. Dent. J., 1989, 34, 530–535.
  • [83] REYES-GASGA J. et al., Conductivity in human tooth enamel, J. Mater. Sci., 1999, 34, 2183–2188.
  • [84] KOENIGSWALD W., Evolutionary trends in differentiation of mammalian enamel ultrastructure, [in:] W. Koenigswald, P.M. Sander (Eds.), Tooth Enamel Microstructure, A.A. Balkema, Rotterdam 1997, 203–236.
  • [85] LOW I.M., DURAMAN N., FULTON J., TEZUKA N., DAVIES I.J., A comparative study of the microstructure-property relationship in human adult and baby teeth, Ceram. Eng. Sci. Proc., 2005, 26, 145–152.
  • [86] ZHENG J., ZHOU Z.R., Effect of age on the friction and wear behaviors of human teeth, Tribology Int., 2006, 39, 266–273.
  • [87] ZHANG G., NG S., LE D.T., YOUNG D., Hardness assessment of human enamel, Technical Research Report T.R., University of Maryland, 1997, 97–42.
  • [88] SARKAR A., ANDABLO-REYES E., BRYANT M., DOWSON D., NEVILLE A., Lubrication of soft oral surfaces, Curr. Opin. Colloid Interface Sci., 2019, 39, 61–75.
  • [89] RANC R., ELKHYAT A., SERVAIS C., MAC-MARY S., LAUNAY B., HUMBERT P.G., Friction coefficient and wettability of oral mucosal tissue: Changes induced by a salivary layer, Colloids and Surfaces A Physicochemical and Engineering Aspects, 2006, 276, 155–161.
  • [90] TOKES J.R., BOEHM M.W., BAIER S.K., Oral processing, texture and mouthfeel: from rheology to tribology and beyond, Curr. Opin. Colloid Interface Sci., 2013, 18, 349–359.
  • [91] WAN NIK W.N.N., BANERJEEM A., MOAZZEZ R., Gastro-oesophageal reflux disease symptoms and tooth wear in patients with Sjögren’s syndrome, Caries Res., 2011, 45, 323–326.
  • [92] DODDS M.W.J., JOHNSON D.A., YEH C.-K., Health benefits of saliva: a review, J. Dent., 2005, 33, 223–233.
  • [93] GLANTZ P.-O., Interfacial phenomena in the oral cavity, Colloids Surfaces A., 1997,123–124, 657–670.
  • [94] LEVINE M.J., Development of artificial saliva, Crit. Rev. Oral Bio. Med., 1993, 4, 279–286.
  • [95] BILT A. VAN DER, ENGELEN L., PEREIRA L.J., GLAS VAN DER H.W., ABBINK J.H., Oral physiology and mastication, Physiol. Behav., 2006, 89, 22–27.
  • [96] AHLGREN J., ÖWALL B., Muscular activity and chewing force: a polygraphic study of human mandibular movement, Arch. Oral Biol., 1970, 15, 271–280.
  • [97] MUNAKATA Y., TSUJI M., KASAI S., Occlusal force pattern during rhythmic human tapping movement, J. Oral Rehabil., 1991, 18, 265–272.
  • [98] LAURELL L., Occlusal forces and chewing ability in dentitions with cross arch bridges, Swed. Dent. J., 1985, Suppl. 26, 1–45.
  • [99] NEIL D.J., KYDD W.L., NAIRN R.I., WILSON J., Functional loading of the dentition during mastication, J. Prosthet. Dent., 1989, 62, 218–228.
  • [100] KOHYAMA K., HATAKEYAMA E., SAKAI T., AZUMA T., KARITA K., Effect of sample thickness on bite force studied with a multiple-point sheet sensor, J. Oral Rehabil., 2004, 3118, 327–334.
  • [101] KOHYAMA K., SAKAI T., AZUMA T., Patterns observed in the first chew of foods with various textures, Food Sci. Technol. Res., 2001, 7, 290–296.
  • [102] WATERS N.S., Some mechanical and physical properties of teeth, [in:] Vimcent J.F.V., Currey D. (Eds.), Mechanical properties of biological materials, Cambridge University Press, Cambridge 1980.
  • [103] KOHYAMA K. et al., Effects of sample hardness on human chewing force: a model study using silicone rubber, Arch. Oral Biol., 2004, 49, 805–816.
  • [104] PAPHANGKORAKIT J., OSBORN J.W., The effects of pressure on a maximum incisal bite force in man, Arch. Oral Biol., 1997, 42, 11–17.
  • [105] PROESCHEL P.A., MORNEBURG T., Task-dependence of activity/ bite-force relations and its impact on estimation of chewing force from EMG, J. Dent. Res., 2002, 81, 464–468.
  • [106] HIDAKA O., IWASKAI M., SAITO M., MORIMOTO T., Influence of clenching intensity on bite force balance, occlusal contact area, and average bite pressure, J. Dent. Res., 1999, 78, 1336–1344.
  • [107] KIM K.-S., CHOI J.-H., KIM S.-T., KIM C.-Y., AHN H.-J., Bite force, occlusal contact area and occlusal pressure of patients with temporomandibular joint internal derangement, Korean Journal of Oral Medicine, 2006, 31, 265–273.
  • [108] REKOV E.D., VAN THOMPSON P., JAHANMIR S., NAGARAJAN R., Wear in the unique environment of the mouth, [in:] Second Joint American-Eastern European Conference on New Materials and Technologies in Tribology, Abstract of Papers, Infotribo, Gomel, Belarus, 1997, 45.
  • [109] DEJAK B., MŁOTKOWSKI A., ROMANOWICZ M., Finite element analysis of stresses in molars during cleanching and mastication, J. Prosthet. Dent., 2003, 90, 591–597.
  • [110] PEYRON M.A., MIOCHE L., RENON P., ABOUELKARAM S., Masticatory jaw movement recordings: a new method to investigate food texture, Food Qual. Pref., 1996, 7, 229–237.
  • [111] JENT T., KARLSSON S., HEDEGARD B., Mandibular movements of young adults recorded by intraorally placed lightemitting diods, J. Prosthet. Dent., 1979, 46, 669–673.
  • [112] BHATKA R., TROCKMORTON G.S., WINTERGERST A.M., HUTCHINS B., BUSCHANG P.H., Bolus size and unilateral chewing cycle kinematics, Arch. Oral Biol., 2004, 49, 559–566.
  • [113] BUSCHANG P.H., HAYASAKI H., TROCKMORTON G.S., Quantification of human chewing-cycle kinematics, Arch. Oral Biol., 2000, 45, 461–474.
  • [114] GROSFELDOWA O. (ed.), Physiology of mastication organ, PZWL, Warsaw 1981 (in Polish).
  • [115] BARCLAY C.W., SPENCE D., LAIRD W.R.E., Intra-oral temperatures during function, J. Oral Rehabil., 2005, 32, 886–894.
  • [116] ZIEMBA S., JAROMINEK W., STANISZEWSKI R., Problems of systems theory, Ossolineum, Wrocław 1980 (in Polish).
  • [117] LILLFORD P.J., The material science of eating and food breakdown, MRS Bulletin, 2000, 38–43.
  • [118] MIOCHE L., BOURDOI P., MONIR S., Chewing behaviour and bolus formation during mastication of meat with different textures, Arch. Oral Biol., 2003, 48, 193–200.
  • [119] HEINTZE S.D., ZAPPINI G., ROUSSON V., Wear of ten dental restorative materials in five wear simulators – Results of a round robin test, Dent. Mater., 2005, 21, 304–317.
  • [120] DE LONG R., DOUGLAS W.H., An artificial oral environment for testing dental materials, IEEE Trans. Biomed. Eng., 1991, 38, 339–345.
  • [121] AHLGREN M., Mechanism of mastication. An EMG study, Acta Odontol. Scand., 1966, 24.
  • [122] EKFELDT E., FLÖYSTRAND F., ÖILO G., Replica techniques for in vivo studies of tooth surfaces and prosthetic materials, Oral. Sci., 1985, 93, 560–565.
  • [123] HEINTZE S.D. 1, REICHL F.-X., HICKEL R., Wear of dental materials: Clinical significance and laboratory wear simulation methods – A review, Dent. Mater. J., 2019, 38, 343–353.
  • [124] CZICHOS H., BECKER S., LEXOW J., Multilaboratory tribotesting: Results from the VAMAS Programme on wear test methods, Wear, 1987, 114, 109–123.
  • [125] RYMUZA Z., Energy concept of the coefficient of friction, Wear, 1996, 199, 187–196.
  • [126] SAJEWICZ E., On evaluation of wear resistance of tooth enamel and dental materials, Wear, 2006, 260, 1256–1261.
  • [127] HUQ M.Z., CELIS J.P., Reproducibility of friction and wear results in ball-on-disc unidirectional sliding tests of TiN-alumina pairings, Wear, 1997, 212, 151–159.
  • [128] RAMALHO A., MIRANDA J.C., The relationship between wear and dissipated energy in sliding systems, Wear, 2006, 260, 361–367.
  • [129] SAJEWICZ E., A comparative study of tribological behaviour of dental composites and tooth enamel: an energy approach, Proc. I. Mech. E., Part J, J. Engineering Tribology, 2010, 224, 559–568.
  • [130] WOJDA S., SZOKA B., SAJEWICZ E., Tribological characteristics of enamel–dental material contacts investigated in vitro, Acta Bioeng. Biomech., 2015, 17, 21–29.
  • [131] BIANCHI E.C., SILVA E.J., MONICI R.D., FREITAS C.A., BIANCHI A.R.R., Development of new standard procedures for the evaluation of dental composite abrasive wear, Wear, 2002, 253, 533–540.
  • [132] SPEARS I.R., A three-dimensional finite element model of prismatic enamel: a re-appraisal of the data on the Young’s modulus of enamel, J. Dent. Res., 1997, 76, 1690–1697.
  • [133] SPEARS I.R., CROMPTON R.H., The mechanical significance of the occlusal geometry of great ape molars in food breakdown, J. Hum. Evol., 1996, 31, 517–535.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c66e5a31-5aeb-405a-8125-1ef7fa6698ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.