
Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.17, No. 3, 2015 327

Science and Technology

Article citation info:

(*)	 Tekst artykułu w polskiej wersji językowej dostępny w elektronicznym wydaniu kwartalnika na stronie www.ein.org.pl

Paweł Skruch
Marek Długosz
Wojciech Mitkowski

Mathematical methods for verification of microprocessor-based 
PID controllers for improving their reliability

Matematyczne metody testowania mikroprocesorowych 
regulatorów PID umożliwiające zwiększenie ich niezawodności*

Proportional-Integral-Derivative (PID) control is the most common control algorithm used in industry. The extensive use of elec-
tronics and software has resulted in the situation where the digital PID controller using a microprocessor as well as its software 
implementation replaces existing pneumatic, mechanical and electromechanical solutions. The reliability of the software system is 
assured by detection and removal of errors that can lead to failures. The paper presents mathematical methods for verification and 
testing of microprocessor-based PID controllers that can be used to increase the reliability of the system. The presented methodol-
ogy explores the concept of testing with a model as an oracle.

Keywords:	 controller, PID, testing, reliability.

Regulator PID (regulator proporcjonalno-całkująco-różniczkujący) jest najbardziej rozpowszechnionym i najczęściej stosowanym 
typem regulatora w przemyśle. Intensywny rozwój elektroniki i informatyki spowodował, że cyfrowe regulatory PID budowane 
na bazie mikroprocesora z odpowiednim oprogramowaniem zastąpiły dotychczasowe rozwiązania pneumatyczne, mechaniczne 
i elektromechaniczne. Zagwarantowanie niezawodności układu elektronicznego z oprogramowaniem polega między innymi na 
wykrywaniu i usuwaniu błędów, które mogą prowadzić do awarii. W pracy przedstawiono matematyczne metody weryfikacji 
mikroprocesorowych regulatorów PID mające na celu wykrycie błędów w systemie i w konsekwencji zwiększenie jego niezawod-
ności poprzez zmniejszenie prawdopodobieństwa wystąpienia awarii. Metody testowania opierają się na tak zwanym podejściu 
modelowym, to znaczy, wykorzystują model systemu jako wzorzec zachowania.

Słowa kluczowe:	 regulator, PID, testowanie, niezawodność.

Skruch P, Długosz M, Mitkowski W. Mathematical methods for verification of microprocessor-based PID controllers for improving their 
reliability. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2015; 17 (3): 327–333, http://dx.doi.org/10.17531/ein.2015.3.1.

1. Introduction

Proportional-Integral-Derivative (PID) control is the most com-
mon control algorithm used in industry. It has been in use for over a 
century in various forms: as a purely mechanical device, as a pneu-
matic device and as an electronic device.

Modern digital PID controller is a system that can be considered 
as a combination of computer hardware and software designed to per-
form a dedicated control function. The control is implemented on a 
custom hardware platform, which is often designed and configured 
for the particular application. Such systems are called embedded sys-
tems [29, 30]. Embedded systems may be observed in common de-
vices employed in everyday living (e.g., coffee machines, washing 
machines, cell phones) as well as in sophisticated engineering systems 
(e.g. cars [4, 29], planes, spacecrafts).

PID controllers are also often safety critical systems. Due to the 
area of application, the PID controller must have high reliability as 
unexpected failures can be fatal. Ensuring the reliability of embedded 
software systems based on the detection and removal of errors that 
can lead to system failure. The process to verify that the system meets 
the specified requirements is referred to as testing. Testing is also the 
process of trying to discover every conceivable fault or weakness in a 
work product [12, 14].

The most common errors that can lead to improper operation of 
control devices equipped with the software include functional errors 
in the code, arithmetic errors associated with the use of fixed-point 
arithmetic, communication and task management errors, lack of ro-
bustness to different types of disturbances and work outside the scope 
of the variability of input signals.



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.17, No. 3, 2015328

Science and Technology

There are several facts that show clearly possible consequences 
of poorly tested systems. On February 25, 1991, an Iraqi Scud hit 
the barracks in Dhahran in Saudi Arabia, killing 28 soldiers from the 
US Army. This accident was caused by software error in the system’s 
clock [24]. The PATRIOT missile battery has been in operation for 
100 hours, by which time the system’s internal clock had drifted by 
one third of a second. For a target moving as fast as Scud, this was 
equivalent to a position error of 600 meters. Another example is con-
nected with Therac-25 radiation therapy machine that was produced 
by Atomic Energy of Canada Limited and CGR of France. The ma-
chine was involved with at least six known accidents between 1985 
and 1987, in which patients were given massive overdoses of radia-
tion, which were in some cases on the order of hundreds of grays 
[18]. At least five patients died of the overdoses. These accidents were 
caused by errors in software control application.One of the most infa-
mous computer bugs in history was found during flight 501 that took 
place on June 4, 1996. This was the first, and unsuccessful, test flight 
of the European Ariane 5 expendable lunch system. Due to an error 
in the software design (inadequate protection from integer overflow), 
the rocket veered off its flight path 37 seconds after launch and was 
destroyed by its automated self-destruct system [19]. As it was an un-
manned flight, there were no victims, but the breakup caused the loss 
of four Cluster mission spacecraft, resulting in a loss of more than 
$370 million.

There are two basis classes of software testing: black box testing 
and white box testing. Black box testing is testing that ignores the in-
ternal mechanism of a system or component and focuses solely on the 
outputs generated in response to selected inputs and execution condi-
tions. White box testing is testing that takes into account the internal 
mechanism of a system or component.

Black box testing is also called functional testing [2, 3] or spec-
ification-based testing. The specification for control systems can be 
very often presented in the form of models. Test cases should be then 
generated systematically out of the models [29, 30]. The most popular 
black box testing techniques include boundary value analysis, equiva-
lence partitioning, decision table testing, state transition testing and 
use case testing (see e.g. [3, 22]).

Boundary values analysis is a testing technique in which tests are 
designed to include boundary values of input functions to stimulate 
the system. The idea comes from the boundary, which is the area 
where testing is likely to yield defects. Equivalence partitioning is a 
technique that divides the input data into groups that are expected to 
exhibit similar behavior, so they can are likely to be processed in the 
same way. The groups are called equivalence partitions (or classes) 
and can be also identified for outputs, interval values and parameters. 
Decision tables are a good way to capture system requirements that 
contain logical conditions. State transition testing is much used within 
the embedded software industry and technical automation where the 
system behavior can be represented using state diagrams. Tests can 
be also specified from use cases or business scenarios. A use case is 
a sequence of steps that describe the interactions between an actor (a 
user of the system) and the system.

White box testing (also called structure-based testing) is based on 
an identified structure of the software or system. The structure can be  
considered as the code itself (i.e., statements, decisions or branches), 
a call tree (a diagram in which modules call other modules), a menu 
structure, business process or web page structure. Test cases designed 
with the help of white box testing techniques take into account such 
input values to cover relevant instruction in the code (instruction test-
ing), decisions (decision testing), conditions, etc.

It should be emphasized that most of the presented techniques and 
methods are seldom applicable in testing software systems where the 
dynamics cannot be neglected [20, 27]. The dynamical systems are 
modeled by difference or differential equations and have usually infi-
nitely many states. There is a need for another approach that will han-

dle continuous aspects of the system (see e.g. [6, 17]). This is because 
of testing dynamics aspects of such systems requires tests that uti-
lize time continuous input signals and time continuous output signals 
(even when the system is digitally processed). The process of select-
ing just a few of the many possible scenarios to be tested is a difficult 
and challenging task and currently is most often based on qualitative 
best engineering judgment. Some results [5, 11, 15, 28] developed for 
hybrid systems can be also applicable to dynamical systems and to 
fractional-order systems (see e.g. [21]) which recently are of interest 
to many scientists and engineers.

The paper is organized as follows. In the next section, modeling 
concepts of the functionality realized by the PID controller are intro-
duced. These concepts are explored further in the next sections and 
are the base for creating test artifacts such as: test oracle (Section 
3), notation of tests (Section 4), implementation of a test comparator 
(Section 5), test coverage (Section 6) and test generation (Sections 7 
and 8). Experimental results are given in Section 9. Conclusions are 
in Section 10.

2. Mathematical description of the PID controller

An embedded PID controller is a system that can be considered 
as a combination of computer hardware and software designed to per-
form a dedicated control function. The PID controller (Fig. 1) works 
in a closed-loop system and attempts to minimize the error e(t) by ad-
justing the control input u(t). The error is calculated as the difference 
between a measured process output y(t) and a desired set point ysp(t).
The control signal is a result of the following calculation

	 u t K e t
T

e T e t
td

t( ) ( ) ( ) ( ) ,= + +








∫

1
0

i
d d

d
τ τ 	 (1)

where K is proportional gain, Ti is integral time, Td is derivative time. 
The control signal is thus a sum of three terms: the P-term (which 
is proportional to the error), the I-term (which is proportional to the 
integral of the error), and D-term (which is proportional to the deriva-
tive of the error).

Introduce the notation w t et
1 0( ) = ∫ ( )τ τd and w t w t2 1( ) = ( ) the equa-

tion (1) can be written as:

	 u t Kw t K
T

w t KT w t( ) ( ),= ( ) + ( ) +2 1 2
i

d  	 (2)

or, equivalently, in matrix notation as:

	 w Ew F wt t u t( ) = ( ) + ( ) ( ) =, ,0 0 	 (3)

where w t w t w t W( ) = ( ) ( )  ∈ ⊂1 2
2T 

Fig. 1. Block diagram of the closed-loop system with the PID controller



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.17, No. 3, 2015 329

Science and Technology

	 E F=
−( ) −













=
( )












− − −

0 1 0
1 1 1TT T KTi d d d

, .	 (4)

The physical and implementation constraints imposed by computer 
system resources lead to the assumption that the space W is bounded. 
The assumption means that the space W is contained in a circle of 
finite radius.

3. Concept of testing with a model as an oracle

The formulas (1) and (3) specify mathematically the system’s be-
havior in clear and unambiguous form. It can be used in computer 
simulations in an early phase of development to validate the system 
concept, calibrate parameters and optimize the system performance. 
In the next phase, the physical system is designed (i.e., hardware and 
software) that shall meet the specified requirements in the form of the 
equations (1), (3). Testing process shall be considered as the last phase 
in the development process that allows verifying that the physical sys-
tem behavior is identical to that observed during computer simula-
tions. If the tests fail then the system needs to be redesigned. The 
physical system that is being tested for the correct operation is often 
referred as system under test (SUT).

The term test oracle describes a source to determine expected re-
sults to compare with the actual result of the SUT [1]. The role of 
such source in the model-based approach is often played by the model 
(see Fig. 2). The approach stipulates that the same input is applied to 
both the SUT and to the model. The input signal is physical in case 
of the SUT (e.g., voltage, current or resistance) and virtual in case 
of the model; from logical point of view both signals are equivalent. 
The judgment whether the result of a test is in conformance with the 
model is delegated to a test comparator. The test comparator is usually 
a tool that compares the actual output produced by the SUT with the 
expected output produced by the model.

4. Notation of tests

One of the fundamental tasks of software testing is the creation 
of test cases. A test case can be considered as a set of inputs, execu-
tion preconditions and expected outcomes developed for a particular 
objective, such as to exercise a particular program path or to verify 
compliance with a specific requirement [13].

Adapting this definition to the SUT modeling concepts (1), a sin-
gle test case Tcase

( )j  can be defined as:

	 Tcase
( ) ( ) ( ) ( ), ,j j j jT e u= ( ) ⋅( ){ }⋅ 	 (5)

where j=1,2,…,N, N≥1 is a label to indicate different test cases, 
e Tj j( ) ( ):[ , ]0 →   is an input function, u Tj j( ) ( ):[ , ]0 →   is an 
expected output function, T(j) stands for test execution time. Notation 
(5) and the model (1) play the key role in the test selection method 
presented in Section 8.

When the system model is described by the equation (3), then a 
single test case Tcase

( )j  can be presented in the form

	 Tcase
( ) ( ) ( ) ( ), ,j j j jT u w= ( ) ( ){ }⋅ ⋅ 	 (6)

where u Tj j( ) ( ):[ , ]0 →   is an input function unlike the notation (5) 

and w( ) ( ):[ , ]j jT0 2→   is an expected output function. Notation (6) 
with the model (3) are the base for the test selection method presented 
in Section 7.

A collection of one or more test cases forms a test suite Tsuite, 
where:

	 T T T Tsuite case case case= …{ }( ) ( ) ( ), , , .1 2 N
	 (7)

5. Implementation of a test comparator

The test comparator can be considered as a tool that implements 
a mechanism for determining whether a test passes or fails [14]. In 
the concept illustrated on Fig. 2, this tool compares the actual output 
produced by the SUT with the expected output produced by the model 
(1) or (3).

A possible practical realization of the comparison function for a 
given test case (5) is presented below:

	 z
u t u t u tj t T

j j j
jT

0 if
case

s( ) [ , ]
( ) ( )

( ) ( ) ,( ) = ∀ ( ) − < ( )∈
( )

0

1

ε

otherwwise,






      (8)

where z denotes the test result, that is, z=0 when the test passes, z=1 
when the test fails, ε>0 is the tolerance range, u j

s
( ) ⋅( )  stands for the 

output produced by the SUT.
In the similar way, the comparison function can be defined for 

notation (6):

	 z
t t tj t T

j j j
jT

0 if
case

s( ) [ , ]
( ) ( )

( ) ( ) ,( ) = ∀ ( ) − < ( )∈
( )

0

1

  w w wε

othherwise,






  (9)

where ws
j( ) ⋅( )  is the output produced by the SUT.

6. Calculation of test coverage

The degree to which a given test suite Tsuite addresses all speci-
fied requirements for a given system is determined by a test coverage 
measure [13]. The most obvious quantification of the system's behav-
ior exercised by the test suite is computed by dividing the number 
of the system states explored by the test suite by the cardinality of 
the entire state space. However, the formula has limited usefulness 
for dynamical systems (and PID controller belongs to this class of 
systems) because the state space for such systems contains usually 
infinite number of states.

In following part of this section it is presented a method for calcu-
lation of test coverage that was taken from the paper [25].The method 
described therein has been adapted to the model (3). The test coverage 
Ch (Tsuite) of the test suite Tsuite can be defined as follows:

	 C
V

W
j
j N

h
j

h
h T

T
suite

case
( ) =

( )=
=
1

( )
	 (10)

Fig. 2. Concept of testing with a model as an oracle



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.17, No. 3, 2015330

Science and Technology

where:

	 W i i Gh W h= = ∈ ∃ ∈ ( ){ }∈i w iw[ , ] :1 2
2T  	 (11)

is the transformed state space created from the system state space W,

G w w w
h

i kh
k

k
ki w w( ) = ∈ = [ ] = =












2

1 2 1 2: , , , ,T

denotes a partition with the size h = [ ] >h h h h1 2 1 2 0, ,,T , w
h

k

k









  is the 

largest integer greater than w
h

k

k
,

	 V W Gj
t T

j
jh h hi w iTcase

( )
[ , ]

( ): ( )( ) = ∈ ∃ ∈ ( ){ }∈ 0
	 (13)

is a set of states of the transformed state space covered by the test case  
Tcase

( )j . It should be noticed that the sum

	 V Vj
j N j

h hT Tsuite case( ) = ( )=
=
1

( ) 	 (14)

will contain the information about the states covered by the test 
suiteTsuite.

In the example presented on Fig. 3, bounded two-dimensional in-
ternal state space W (the area embraced by the bold solid line) has 
been transformed to the space

	
W i i i ih i= = [ ] ∈ = … = …{ }
[ ] [ ]

1 2
2

1 20 1 8 0 1 4

0 0 1 0 8 0

, , , , , , , , , \

, , , , ,

T

T T



[[ ] [ ] [ ] [ ] [ ]{ }T T T T T, , , , , , , , .0 1 0 4 7 5 8 4
	 (15)

that consists of 45 elements G i i i ih i( ) = [ + )×[ + )1 1 2 21 1, ,  with the 

size of 1×1. Fig. 3 contains also system trajectories related to two 
exampled test cases: Tcase

( )1  and Tcase
( )2 . 10 grid boxes are visited by the 

system trajectory belonging to the first test case, 9 – to the second test 

case. The test suite T T Tsuite case case= { }( ) ( ),1 2  consisting of these test cases 

covered in total 17 grid boxes what implies the test coverage at level 

Ch Tsuite( ) = ≈
17
45

0 45 45. ( %) .

7. A test selection method for conformance testing

In this section, an algorithm for generating test cases is presented. 
The algorithm uses the modeling concept (3) of the SUT to generate 
test cases and calculate test coverage according to the method pre-
sented in the previous section. It explores transformed state space by 
using input signals that steer the system from an initial state to a final 
state. The selection and completeness of test cases is quantified by the 
coverage metric (10). The main idea of the presented strategy is to 
check that the functional specification in the form of the equation (3) 
is correctly implemented, which is variously referred to in the litera-
ture as conformance testing [14], correctness testing [16] or functional 
testing [13].

Algorithm 1

1°:	Set the parameters: h = > ∈ >[ , ] , , , ( , ],h h h h TT
1 2 1 2 0 0 1 0δ

2°:	 Tsuite :=∅ , Vh Tsuite( ) = ∅: , Ch Tsuite( ) =: 0 , j:=1

3°:	while Ch (Tsuite )<δ do
4°:	Find wa h aG∈ ( )i  where i W Va h h∈ ( )\ Tsuite

5°:	Calculate the control function u(∙) that steers the 
system from the zero initial state to the final state wa

6°:	Calculate the trajectory w FEt e utT( ) = ( )−( )∫ τ τ τd
0

 by 
solving the equation (3)

7°:	Tcase
( ) ( ) ( ) ( ), ,j j j jT u= ⋅( ) ⋅( ){ }w  where T T u uj j j( ) ( ) ( ), : , :⋅ ⋅( ) = ⋅( ) ⋅( ) = ⋅( )w w

8°:	 T T Tsuite suite case: ( )= ∪ j

9°:	Calculate Vh (Tsuite) and Ch (Tsuite)
10°:	j j:= +1
11°: end while
Remark 1. The size h=[h1, h2 ]T of the partition can be chosen accord-
ing to the formula

	 h i
w t

i
t imax

, , .≥ ( )
=0

10
1 2 	 (16)

For safety critical systems there would be recommended to decrease 
the granulation of the partitions hi. However, it should be clear that 
too small granulation significantly increases the number of test cases 
and overall testing effort.

Remark 2. The system (3) is controllable as the rank of the control-
lability matrix is equal to the size of the system, that is, rank[E EF]=2 
(see e.g. [20]). This means that there exist generally many different 
controls which steer the system from the zero initial state to the fi-
nal state wa at time T>0. For example, minimum energy control [20] 
is probably the easiest computable control steering the system to a 
desired state under the assumption that the constraints posed on the 
system are not violated.

8. A test selection method for negative testing

In this section, the test selection problem is formulated as an op-
timization problem. Representative test cases are constructed during 
optimization procedure using the model (1). The test selection is com-
bined with the test execution and these two activities are conducted 
at the same time. The main advantage of the approach is focus on 

Fig. 3. Illustration of the test coverage for the state space W



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.17, No. 3, 2015 331

Science and Technology

error prone situations that leads to drastically reduced number of rep-
resentative test cases.

The problem is to find a test case Tcase = ⋅( ) ⋅( ){ }T e u, ,  which is a 

result of the optimization procedure

	 max maxe E e E
TJ e u t u t t∈ ∈( ) = ( ) − ( )( )∫ad ad s d2
0

	 (17)

where Ead stands for the set of admissible error functions. The set 
Ead can be correlated with physical and implementation constraints 
imposed by computer system resources.

Algorithm 2
1º:	Set the parameters: Ead and T>0
2º:	Run the optimization procedurefor the problem 

(16) to obtain the solution e E* ∈ ad

3º:	Calculate the control signal u* ⋅( )  using the 

equation (1) for the error signal e* ⋅( )

4º:	 Tcase : , ,* *= ⋅( ) ⋅( ){ }T e u .

9. Experimental results

In order to evaluate the efficiency and usability of the presented 
algorithms as well as their ability to find faults they were applied 
to the real system. The faults in the form of incorrect parameters of 
the PID controller have been deliberately introduced to the system 
implementation. For better illustration of the results the parameters 
have been modified by 20% from the correct values. In practice, these 
faults can be caused by the use of fixed-point arithmetic; they can also 
result from errors in the identification procedure and can be a direct 
consequence of programmer error. Introduction of incorrect param-
eters values to the control system can result in different time to reach 
the steady state than expected, larger overshoot in the system and in 
the worst case in instability of the closed-loop system. Good control 
quality depends strongly on the correct settings what is especially im-
portant in optimal control problems [7] applicable, for example, for 
electric motors [8] and internal combustion engines [26].

Consider the model (1) of the PID controller with the following 
parameters

	 K = 3.60,   Ti = 1.81,   Td = 0.45.	 (18)

Next, the functionality described by the equation (1) has been imple-
mented in software, which runs in a microprocessor on the embedded 
hardware platform, however with incorrect values of the parameters, 
that is

	   K T Ti= = =2 88 2 17 0 36. , . , .d .	 (19)

The entire system has been tested with the help of the algorithm 
1 which has been implemented and executed for the following in-
put parameters: h=[0.3,0.2]T, δ=0.7, T=20 [s], |w1(t)|≤1.5, |w2(t)|≤1.0 
(system implementation constraints).The test suite that guarantees the 
coverage level higher that δ consits of 10 test cases. Elements of the 
generated test cases of the form of (6) are graphically presented in 
Figs. 4 and 5. Comparison of the actual trajectory obtained from the 
SUT with the expected trajectory is shown in Fig. 6. The output from 
the SUT for the first test case is not within the tolerance range ε=0.1 
relative to the expected output, therefore the test case is qualified as 
fail. This proofs existence of the fault in the system.

Consider the following set of admissible error functions:

Fig. 4.	 Trajectories w(j), j=1,2,…,10 and elements (gray rectangles) of the 
transformed state space Wh covered by the test cases Tcase

( )j .The model 
trajectories start in □ and end in ○

Fig. 5. Input functions for the test cases Tcase
( ) , , , ,j j =1 2 10

Fig. 6.	 The comparison of the output function ws
1( )  produced by the tested 

PID system (dotted line) with the expected output function w( )1  (solid 
line) produced by the model. The limits of tolerance of 10% are marked 
on the drawing by a thin dotted line



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.17, No. 3, 2015332

Science and Technology

E e T e t t t t e t iiad PC= ∈ [ ]( ) ( ) = + + + ( ) ≤ =0 2 0 10
3

1
2

2 3, , : , , , , , α α α α α  22 3,{ }
(20)

that can be used in the optimization procedure (algorithm 2) to find 
such test cases that maximize the difference (17) between the outputs 
produced by the tested system and its model within the time T. The 
implementation of the algorithm with the Nelder-Mead simplex (di-
rect method) [23] leads to the following local optimal solution:

	 e(t)=0.0032t3 − 0.1072t2 + 0.8534t + 0.0089 .	 (21)

Elements of the generated test cases of the form of (5) are graphi-
cally presented in Fig. 7. The figure includes also for comparison pur-
poses the actual trajectory obtained from the tested system.

The main advantage of the testing method based on the algorithm 
2 is a significant reduction of test cases, which the search is done us-

ing the optimization procedure. The algorithm focuses on error prone 
situations. As a result, the time and cost associated with the testing 
of the system can be significantly reduced. Since the effort put into 
testing is, according to estimates [2], from 30 up to 90 percentage of 
the overall effort in the projects, the benefits coming from even a very 
small reduction of this factor can be very profitable. It should be also 
noted that the algorithm 2 performs the search for test cases while 
using the physical system and its mathematical representation. Thus, 
to start the process of testing both the model and the real system are 
required for. Moreover, the formulation described in the algorithm 2 
takes the form of a functional optimization problem, which may ap-
pear difficult to solve as it requires transformation to a value optimi-
zation problem.

10.  Conclusions

The paper has presented two different methods for testing embed-
ded PID controllers to provide required quality of the system, assure 
compliance with safety standards and eliminate errors at the stage of 
system design. Elimination of errors in the early stages of product 
development can increase system reliability and reduce the risk of 
failures during the operational phase. All elements of the testing proc-
ess (i.e., concept of testing, notation of test cases, implementation of 
a test comparator, test coverage, selection of test cases) have been 
formulated and described in using the appropriate mathematical nota-
tion. The key role in the presented approach plays the mathematical 
model that represents intended behavior of the designed system. In 
this way it was possible to develop methods for testing systems where 
the dynamics plays an important role and where classical testing tech-
niques cannot be applied to.

The presented approach can be easily generalized to other mi-
croprocessor-based control systems. Controllers with dynamic com-
pensator [27], electric motor controllers [7, 8], controllers of internal 
combustion engines, neural networks controllers [9] and fuzzy logic 
controllers [10] are examples of the systems that can be verified using 
the algorithms described in this paper.

Fig.7. The elements of the test case generated with the help of the algorithm 2

References

1. Adrion W, Brandstad J, Cherniabsky J. Validation, verification and testing of computer software. Computing Survey 1982; 14(2): 159-192, 
http://dx.doi.org/10.1145/356876.356879.

2. Beizer B. Software Testing Techniques, 2nd ed. Boston: Van Nostrand Reinhold, 1990.
3. Beizer B. Black-Box Testing: Techniques for Functional Testing of Software and Systems. New York: John Willey & Sons, 1995.
4. Chłopek Z, Biedrzycki J, Lasocki J, Wójcik P. Assessment of the impact of dynamic states of an internal combustion engine on its operational 

properties. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2015; 17(1): 35-41, http://dx.doi.org/10.17531/ein.2015.1.5.
5. Dang T. Model-based testing of hybrid systems. In: Model-Based Testing for Embedded Systems. Boca Raton: CRC Press 2011; 383-423, 

http://dx.doi.org/10.1201/b11321-15.
6. Dang T, Nahhal T. Coverage-guided test generation for continuous and hybrid systems. Formal Methods in System Design 2009; 34(2): 183-

213, http://dx.doi.org/10.1007/s10703-009-0066-0.
7. Długosz M. Problemy optymalizacyjne układów napędowych robotyki. Przeglad Elektrotechniczny – Electrical Review 2011; 87(9a): 238-

242.
8. Długosz M, Lerch T. Komputerowa identyfikacja parametrów silnika prądu stałego. Przeglad Elektrotechniczny – Electrical Review 2010; 

85(2): 34-38.
9. Długosz R, Kolasa W, Pedrycz M, Szulc M. Parallel programmable asynchronous neighborhood mechanism for Kohonen SOM implemented 

in CMOS technology. IEEE Transactions on Neural Networks 2011; 22(12): 2091-2104, http://dx.doi.org/10.1109/TNN.2011.2169809.
10. Długosz R, Pedrycz W. Łukasiewicz fuzzy logic networks and their ultra low power hardware implementation. Neurocomputing 2010; 

73(7-9): 1222-1234, http://dx.doi.org/10.1016/j.neucom.2009.11.027.
11. Esposito J. Automated test trajectory for hybrid systems. Proceedings of the 35th Southeastern Symposium on System Theory 2003; 441-

444, http://dx.doi.org/10.1109/SSST.2003.1194609.
12. IEEE Std 1012-2004. IEEE standard for software verification and validation, 2004.
13. IEEE Std 61012-1990. IEEE standard glossary of software engineering terminology, 1990.
14. ISTQB International Software Testing Qualification Board. Standard glossary of terms used in software testing, version 2.1, 2010.



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.17, No. 3, 2015 333

Science and Technology

15. Julius A, Fainekos G, Anand M, Lee I, Pappas G. Robust test generation and coverage for hybrid systems. Proceedings of the 10th International 
Conference on Hybrid Systems: Computation and Control (HSCC), Pisa 2007; 329-342, http://dx.doi.org/10.1007/978-3-540-71493-4_27.

16. Kaner C, Faulk J, Nguyen H. Testing Computer Software, 2nd ed. New York: John Willey & Sons, 1995.
17. LaValle S, Kuffner J. Rapidly-exploring random trees: progress and prospects. In: Algorithmic and Computational Robotics: New Directions 

2001; 293-308.
18. Leveson N, Turner S. An investigation of the Therac-25 accidents. IEEE Computer 1993; 27(7): 18-41; http://dx.doi.org/10.1109/

MC.1993.274940.
19. Lions J. ARIANE 5. Flight 501 failure. Ariane 501 Inquiry Board Report, Paris, 1996.
20. Mitkowski W. Stabilizacja systemów dynamicznych. Warszawa: WNT, 1991.
21. Mitkowski W, Skruch P. Fractional-order models of the supercapacitors in the form of RC lader networks. Bulleting of the Polish Academy 

of Sciences, Technical Sciences 2013; 61(3): 581-587, http://dx.doi.org/10.2478/bpasts-2013-0059.
22. Myers G. The Art of Software Testing, 2nd ed. New York: John Willey & Sons, 2004.
23. Nelder J, Mead R. A simplex method for function minimization. The Computer Journal 1965; 7(4): 308-313, http://dx.doi.org/10.1093/

comjnl/7.4.308.
24. Skeel R. Roundoff error and the Patriot missile. Society for Industrial and Applied Mathematics (SIAM) News 1992; 25(4): 11.
25. Skruch P. A coverage metric to evaluate tests for continuous-time dynamic systems. Central European Journal of Engineering 2011; 1(2): 

174-180, http://dx.doi.org/10.2478/s13531-011-0015-8.
26. Skruch P. An educational tool for teaching vehicle electronic system architecture. International Journal of Electrical Engineering Education 

2011; 48(2): 174-183, http://dx.doi.org/10.7227/IJEEE.48.2.5.
27. Skruch P: Feedback stabilization of a class of nonlinear second-order systems. Nonlinear Dynamics 2010; 59(4): 681-692, http://dx.doi.

org/10.1007/s11071-009-9570-4.
28. Tabuada P. Verification and Control of Hybrid Systems. Dordrech: Springer, 2009, http://dx.doi.org/10.1007/978-1-4419-0224-5.
29. Zander-Nowicka J. Model-based testing of real-time embedded systems in the automotive domain. PhD thesis. Berlin: Fraunhofer IRB 

Verlag, 2009.
30. Zander J, Schieferdecker I, Mosterman P. (Eds) Model-Based Testing for Embedded Systems. Boca Raton: CRC Press, 2012.

Paweł Skruch
Marek Długosz
Wojciech Mitkowski
Department of Automatics and Biomedical Engineering
AGH University of Science and Technology
Al. A. Mickiewicza 30/B1, 30-059 Kraków, Poland
E-mails: pawel.skruch@agh.edu.pl, mdlugosz@agh.edu.pl, 
wojciech.mitkowski@agh.edu.pl


