PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nusselt Number Correlation of SAH

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the experimentally investigated thermal performance of a single pass solar air heater. The effects of mass flow rate of air on the outlet temperature, Nusselt Number, Reynolds Number, Prandtl Number, heat transfer in the thickness of the solar collector and thermal efficiency were studied. Experiments were performed for the mass flow rates of 0.0108, 0.0145 and 0.0184 kg/s. For this effect was have created a new correlation correspondent of solar air collector with using fins it was written Nu=K1Re^0.939 Pr^0.523 exp(1.2 m) h^(0.0505Pr).The maximum efficiency levels obtained for the 0.0108, 0.0145 and 0.0184 kg/s were 28.63, 39.69 and 55.69% respectively. A comparison of the results of the solar collector without fins shows a substantial enhancement in thermal efficiency.
Rocznik
Strony
100--110
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
  • Mechanical Department, Faculty of Technology University of Biskra 07000, Algeria, Mechanical Laboratory, Faculty of Technology University of Biskra 07000, Algeria
autor
  • Mechanical Department, Faculty of Technology University of Biskra 07000, Algeria, Mechanical Laboratory, Faculty of Technology University of Biskra 07000, Algeria
  • Material Sciences Laboratory, Faculty of Science University of Biskra 07000, Algeria
autor
  • Mechanical Department, Faculty of Technology University of Biskra 07000, Algeria
autor
  • Material Sciences Laboratory, Faculty of Science University of Biskra 07000, Algeria
Bibliografia
  • [1] E. K. Akpinar, F. Koçyigit, Experimental investigation of thermal performance of solar air heater having different obstacles on absorber plates, Int Commun Heat Mass 37 (4) (2010) 416–421.
  • [2] S. Karsli, Performance analysis of new-design solar air collectors for drying applications, Renewable Energy 32 (10) (2007) 1645–1660. doi:10.1016/j.renene.2006.08.005.
  • [3] B. S. Romdhane, The air solar collectors: Comparative study, introduction of baffles to favor the heat transfer, Solar Energy 81 (1) (2007) 139–149. doi:10.1016/j.solener.2006.05.002.
  • [4] A. Omojaro, L. Aldabbagh, Experimental performance of single and double pass solar air heater with fins and steel wire mesh as absorber, Applied Energy 87 (12) (2010) 3759–3765. doi:10.1016/j.apenergy.2010.06.020.
  • [5] D. J. Close, R. V. Dunkle, Behaviour of adsorbent energy storage beds, Sol. Energy 18 (4) (1976) 287–292.
  • [6] C. H. Liu, E. M. Sparrow, Convective-radiative interaction a parallel plate channel-application to air-operated solar collectors, Int. J. Heat Mass Transf. 23 (8) (1980) 1137–1146.
  • [7] M. K. Seluck, Solar air heaters and their applications, Academic Press, New York, 1977.
  • [8] H. M. Tan, W. W. S. Charters, Experimental investigation of forced-convective heat transfer for fully-325 developed turbulent flow in a rectangular duct with asymmetric heating, Sol. Energy 13 (1) (1970) 121–125.
  • [9] A. Whillier, Plastic covers for solar collectors, Sol. Energy 7 (3) (1963) 148-154.
  • [10] H.-M. Yeh, C.-D. Ho, J.-Z. Hou, Collector efficiency of double-flow solar air heaters with fins attached, Energy 27 (8) (2002) 715–727. doi:10.1016/S0360-5442(02)00010-5.
  • [11] F. Kreith, J. F. Kreider, Principles of solar engineering, 2nd Edition, McGraw-Hill, New York, 1978.
  • [12] J. A. Duffie,W. A. Beckman, Solar engineering of thermal processes, 3rd Edition, Wiley, New York, 1980.
  • [13] J. K. Tonui, Y. Tripanagnostopoulos, Improved pv/t solar collectors with heat extraction by forced or natural air circulation, Renew. Energy 32 (4) (2007) 623–637.
  • [14] W. Gao,W. Lin, T. Liu, C. Xia, Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters, Applied Energy 84 (4) (2007) 425–441. doi:10.1016/j.apenergy.2006.02.005.
  • [15] A. A. Mohamad, High efficiency solar air heater, Sol. Energy 60 (2) (1997) 71–76.
  • [16] S. K. Verma, B. N. Prasad, Investigation for the optimal thermohydraulic performance of artificially roughened solar air heaters, Renew. Energy 20 (1) (2000) 19–36.
  • [17] H. M. Yeh, Theory of baffled solar air heaters, Energy 17 (7) (1992) 697–702.
  • [18] H. P. Garg, V. K. Sharma, A. K. Bhargava, Theory of multiple-pass solar air heaters, Energy 10 (5) (1985) 589–599.
  • [19] C. D. Ho, W. Y. Yang, An analytical study of heattransfer efficiency in laminar counter flow concentric circular tubes with external refluxes, Chem. Eng. Sci. 58 (7) (2003) 1235–1250.
  • [20] C. Ho, C. Yeh, S. Hsieh, Improvement in device performance of multi-pass flat-plate solar air heaters with external recycle, Renewable Energy 30 (10) (2005) 1601– 1621. doi:10.1016/j.renene.2004.11.009.
  • [21] C. D. Ho, H. M. Yeh, S. C. Chiang, Mass-transfer enhancement in double-pass mass exchangers 348 with external refluxes, Ind. Eng. Chem. Res. 40 (24) (2001) 5839–5846.
  • [22] P. N. Nwachukwu, Employing exergy-optimized pin fins in the design of an absorber in a solar air heater, Energy 35 (2) (2010) 571–575.
  • [23] A. A. El-Sebaii, S. Aboul-Enein, M. R. I. Ramadan, S. M. Shalaby, B. M. Moharram, Thermal performance investigation of double pass-finned plate solar air heater, Appl Energ 88 (5) (2011) 1727–1739.
  • [24] W. Lin,W. Gao, T. Liu, A parametric study on the thermal performance of cross-corrugated solar air collectors, Appl Therm Eng 26 (10) (2006) 1043–1053.
  • [25] W. Gao,W. Lin, T. Liu, C. Xia, Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters, Appl Energ 84 (4) (2007) 425–441.
  • [26] F. Chabane, N. Moummi, S. Benramache, Experimental analysis on thermal performance of a solar air collector with longitudinal fins in a region of biskra, algeria, Journal of Power Technologies 93 (1) (2013) 52–58.
  • [27] F. Chabane, N. Moummi, S. Benramache, Performances of a single pass solar air collector with longitudinal fins inferior an absorber plate, Am J Adv Sci Res 1 (4) (2012) 146–157.
  • [28] F. Chabane, N. Moummi, S. Benramache, Experimental study on heat transfer for a solar air heater and contribution the fins to improve the thermal efficiency, Int J Adv Renew Energ Res 487–494 (2012) 1.
  • [29] F. Chabane, N. Moummi, S. Benramache, Experimental performance of solar air heater with internal fins inferior an absorber plate, in the region of biskra, Int J Energ & Tech 1–6 (2012) 4.
  • [30] F. Chabane, N. Moummi, S. Benramache, Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater, Journal of Advanced Researchdoi: 10.1016/j.jare.2013.03.001.
  • [31] F. Chabane, N. Moummi, A. Brima, S. Benramache, Thermal efficiency analysis of a single-flow solar air heater with different mass flow rates in a smooth plate, Frontiers in Heat and Mass Transferdoi: 10.5098/hmt.v4.1.3006.
  • [32] F. Chabane, N. Moummi, S. Benramache, D. Bensahal, O. Belahssen, F. Z. Lemmadi, Thermal performance optimization of a flat plate solar air heater, International Journal of Energy & Technology 5 (8) (2013) 1–6.
  • [33] F. Chabane, N. Moummi, S. Benramache, D. Bensahal, O. Belahssen, Effect of artificial roughness on heat transfer in a solar air heater, Journal of Science and Engineering 1 (2) (2013) 85–93.
  • [34] F. Chabane, N. Moummi, S. Benramache, Design, developing and testing of a solar air collector experimental and review the system with longitudinal fins, International Journal of Environmental Engineering Research 2 (1) (2013) 18–26.
  • [35] B. Bhushan, R. Singh, A review on methodology of artificial roughness used in duct of solar air heaters, Energy 35 (2010) 202–212.
  • [36] Varun, R. Saini, S. Singal, A review on roughness geometry used in solar air heaters, Sol Energ 81 (11) (2007) 1340–1350.
  • [37] D. Gupta, S. C. Solanki, J. S. Saini, Heat and fluid flow in rectangular solar air heater ducts having transverse rib roughness on absorber plates, Sol Energ 51 (1993) 31–37.
  • [38] A. R. Jaurker, J. S. Saini, B. K. Gandhi, Heat transfer and friction characteristics of rectangular solar air heater duct using rib-grooved artificial roughness, Sol Energ 80 (2006) 895–907.
  • [39] R. Karwa, Experimental studies of augmented heat transfer and friction in asymmetrically heated rectangular ducts with ribs on the heated wall in transverse, inclined, v-continuous and v-discrete pattern, Int Commun Heat & Mass Transfer 30 (2003) 241–250.
  • [40] S. V. Karmare, A. N. Tikekar, Heat transfer and friction factor correlation for artificially roughened duct with metal grit ribs, Int J Heat & Mass Transfer 50 (2007) 4342–4351.
  • [41] A. M. E. Momin, J. S. Saini, S. C. Solanki, Heat transfer and friction in solar air heater duct with v-shaped rib roughness on absorber plate, Int J Heat & Mass Transfer 45 (2002) 3383–3396.
  • [42] R. P. Saini, J. S. Saini, Heat transfer and friction factor correlations for artificially roughened ducts with expended metal mesh as roughness element, Int. J. Heat Mass Transfer 40 (4) (1997) 973–986.
  • [43] W. McAdams, Heat Transmission, McGraw-Hill, New York, 1954.
  • [44] E. Azad, Design, installation and operation of a solar thermal public bath in eastern iran, Energy for Sustainable Development 16 (1) (2012) 68–73. doi:10.1016/j.esd.2011.10.006.
  • [45] G. N. Tiwari, Solar energy: fundamentals, design modeling and applications, CRC Press and Narosa Publishing House, New York and New Delhi, 2002.
  • [46] R. P. Saini, J. S. Saini, Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element, Int J Heat & Mass Transfer 40 (1997) 973–986.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c66be5d5-11c6-489d-9a8c-90ff490a5275
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.