PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Accuracy of spindle units with hydrostatic bearings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work is devoted to the research ofprecision regularities in a spindle unit by the trajectory of the spindle installed on hydrostatic bearings.The mathematical model of trajectories spindle with lumped parameters that allows to define the position of the spindle with regard the simultaneous influence of design parameters, geometrical deviations ofform, temperature deformation bearing surfaces, the random nature of operational parameters and technical loads of hydrostatic bearings has been developed. Based on the results of numerical modeling the influence of shape errors of bearing surface of hydrostatic bearing on the statistical characteristics of the radius vector trajectories of the spindle by varying the values rotational speed of the spindle and oil pressure in front hydrostatic bearing has been developed. The obtained statistical regularities of precision spindle unit have been confirmed experimentally. It has been shown that an effective way to increase the precision of spindle units is to regulate the size of the gap in hydrostatic spindle bearings. The new design of an adjustable hydrostatic bearing, which can improve the accuracy of regulation size gap has been proposed.
Rocznik
Strony
117--124
Opis fizyczny
Bibliogr. 18 poz., rys., wykr.
Twórcy
  • Chernihiv National University of Technology, Mechanical Engineering Department, Shevchenko Street, 95, Chernihiv, Ukraine
autor
  • Chernihiv National University of Technology, Mechanical Engineering Department, Shevchenko Street, 95, Chernihiv, Ukraine
autor
  • Chernihiv National University of Technology, Mechanical Engineering Department, Shevchenko Street, 95, Chernihiv, Ukraine
Bibliografia
  • 1. Fedorynenko D., Boyko S., Sapon S. (2015), The search of the spatial functions of pressure in adjustable hydrostatic radial bearing, Acta Mechanica et Automatica, 9(1), 23-26.
  • 2. Fedorynenko D., Sapon S., Boyko S.(2014), Considering of the thermal strains in determining the function of the radial clearance in hydrostatic bearing in high-speed spindle node, Technological systems, 2(10), 154-159.
  • 3. Fedorynenko D., Sapon S., Boyko S., Kosmach A. (2015), Information-measuring complex for research of spindle trajectories on hydrostatic bearings, Scientific Bulletin of National Mining University: scientific journal, 6(150), 42-48.
  • 4. Junpeng S., Guihua H., Yanqin Z., Yuhong D. (2008), Hardware-inthe-loop Simulation on Controllable Hydrostatic Thrust Bearing, IEEE International Conference on Automation and Logistics (ICAL 2008), 1095-1099.
  • 5. Junpeng S., Yanqin Z., PengchengL. (2007), Static flow simulation of hydrostatic bearing ellipse and sector curve based on fluent, Lubrication Engineering, 1, 93−95.
  • 6. Perovic B. (2012), Hydrostatic guides and bearings: basic principles, calculation and design of hydraulic plans (in German), SpringerVerlag Berlin Heidelberg.
  • 7. Rubinstein R.Y. (2007), Simulation and the Monte Carlo Method, Kroese – 2nd edition, Wiley.
  • 8. Sapon S.P.(2013), Methodology of experimental determination precisionspindle, Bulletin of Chernihiv State Technological University, A series of technical sciences, 1(63), 66-74.
  • 9. Savin L.A. (2006), Simulation of rotor systems with fluid friction bearings, Moscow: Engineering.
  • 10. Shen C.G., Wang G.C., Wang S.L. (2010), Computation and Analysis of Unbalancing Responses of High Speed Machining Tool System, Advanced Materials Research, 148-149(1), 40-46.
  • 11. Solomin O.V.(2007), Development of methods and tools of dynamic analysis of rotor systems with fluid friction bearings, phd thesis, Orel State University.
  • 12. Strutynsky V., Fedorynenko D. (2011), Statistical dynamics of spindle units for hydrostatic bearings, Nizhin: LLC "Publishing" Aspect-Polygraph.
  • 13. Wardle F. (2015), Ultra Precision Bearings, Cambridge: Elsevier.
  • 14. Xiaodong Y., Huaimin L. (2006), Computerized Simulation of Lubricating Characteristics of Circular Tilting Pad Thrust Bearing, Lubrication Engineering, 3, 84-87.
  • 15. Xiaodong Y., Huaimin L., Xiurong G. (2007), Numerical Analysis of Lubricating Characteristics of Sector Thrust Bearing Pad, Lubrication Engineering, 1, 123-125.
  • 16. Yu X.D., Zhang Y.Q. (2008), Numerical Simulation of Gap Flow of Sector Recess Multi-pad Hydrostatic Thrust Bearing, Proc. 2008 Asia Simulation Conference-7th Int. Conf. Simulation and Scientific Computing (ICSC 08), 675–679.
  • 17. Yuan S., Lin J., Liu Q. (2008), Finite Element Analysis of Machine Tool as a Whole, Machine Tool & Hydraulics,36(4):17-18,49.
  • 18. Zhao H., Yang J., Shen J.(2007), Simulation of thermal behaviour of a CNC machine tool spindle, International Journal of Machine Tool & Manufacture, 47(6), 1003-1010.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c668065f-2295-4803-9489-33c03d88d52b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.