PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of microporous oxide layer synthesized on Ti–6Al–7Nb alloy by micro-arc oxidation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work a microporous oxide layer was formed on two phase (α+β) Ti–6Al–7Nb titanium alloy by the micro-arc oxidation process in an electrolyte containing (CH3COO)2CaH2O and Na3PO4. The thickness of the surface layer was in the range of 2.7 μm–3.6 μm. Microstructure of the surface layer and the substrate alloy was characterized with use of scanning- and transmission electron microscopy as well as by X-ray diffractometry. The microstructure of the surface layer consisted of TiO2 rutile and anatase nanocrystals as well as of amorphous regions containing mainly Ti, Ca and O atoms and a minority of P, Al and Nb ones. The surface layer was highly porous. The open pores, with diameter up to 6 µm, were homogenously distributed in the specimen surface. Electron tomography was used to investigate the pores morphology and spatial distribution. It was found that open pores exhibited a complex geometry. The closed pores had nearly spherical shape. Adhesion of the surface layer to the titanium alloy substrate was investigated by means of the scratch-test. The value of critical load LC2=14 N indicates a good layer adhesion to the underlying substrate.
Rocznik
Strony
370--375
Opis fizyczny
Bibliogr. 18 poz., rys., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Maslak, Istanbul 34469, Turkey
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in Medicine, Springer-Verlag, Berlin, 2001.
  • [2] X. Liua, P.K. Chub, Ch. Dinga, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science and Engineering R 47 (2004) 49-121.
  • [3] M.F. Lopez, A. Gutierrez, J.A. Jimenez, Surface characterization of new non-toxic titanium alloys for use as biomaterials, Surface Science 482-485 (2001) 300-305.
  • [4] T. Moskalewicz, S. Seuss, A.R. Boccaccini, Microstructure and properties of composite polyetheretherketone/Bioglass® coatings deposited on Ti-6Al-7Nb alloy for medical applications, Applied Surface Science 273 (2013) 62-67.
  • [5] H.U. Cameron, R.M. Pilliar, I. Macnab, The rate of bone ingrowth into porous metal, Journal of Biomedical Materials Research 10 (19£6) 295-302.
  • [6] A.I. Itala, H.O. Ylanen, C. Ekholm, K.H. Karlsson, H.T. Aro, Pore diameter of more than 100 (¿m is not requisite for bone ingrowth in rabbits, Journal of Biomedical Materials Research 58 (2001) 679-683.
  • [7] J. Bobyn, R.M. Pilliar, H. Cameron, G. Weatherly, The optimum pore size for the fixation of porous surfaced metal implants by ingrowth of bone, Clinical Orthopaedics 150 (1980) 263-270.
  • [8] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Review: plasma electrolysis for surface engineering, Surface and Coatings Technology 122 (1999) 73-93.
  • [9] A.K.M. Nurul Amin (Ed.), InTech, 2012, , ISBN: 978-953-51- 0354-7.
  • [10] W.H. Song, Y.K. Jun, Y. Han, S.H. Hong, Biomimetic apatite coatings on micro-arc oxidized titania, Biomaterials 25 (2004) 3341-3349.
  • [11] B.H. Zhao, I.S. Lee, I.H. Han, J.C. Park, S.M. Chung, Effects of surface morphology on human osteosarcoma cell response, Current Applied Physics 7 (2007) e6-el0.
  • [12] L.-H. Li, Y.-M. Kong, H.-W. Kim, Y.-W. Kim, H.-E. Kim, Seong- Joo Heo, J.-Y. Koak, Improved biological performance of Ti implants due to surface modification by micro-arc oxidation, Biomaterials 25 (2004) 2867-2875.
  • [13] H. Cimenoglu, M. Gunyuz, G.T. Kose, M. Baydogan, Micro- arc oxidation of Ti6Al4V and Ti6Al7Nb alloys for biomedical applications, Materials Characterization 62 304-311.
  • [14] P. Stadelmann, JEMS Java Electron Microscopy Software, 2004, (http://cimewww.epfl.ch/)
  • [15] A. Kruk, G. Cempura, B. Dubiel, A. Czyrska-Filemonowicz, Application of EFTEM and FIB electron tomography to 3D visualization and metrology of nanoparticles in Inconel 718 superalloy, Materials Engineering 31 (2010) 606-609.
  • [16] T. Moskalewicz, A.R. Boccaccini, A. Czyrska-Filemonowicz, Microstructure of nanocrystalline TiC>2 films produced by electrophoretic deposition on Ti-6Al-7Nb alloy, Surface and Coatings Technology 201 (2007) 7467-7471.
  • [17] X.Y. Wang, Z. Liu, H. Liao, D. Klein, C. Coddet, Microstructure and electrical properties of plasma sprayed porous Ti02 coatings containing anatase, Thin Solid Films 451-452 (2004) 37-42.
  • [18] M. Uchida, H.M. Kim, T. Kokubo, S. Fujibayashi, T. Nakamura, Structural dependence of apatite formation on titania gels in a simulated body fluid, Journal of Biomedical Materials Research 64 (2003) 164-170.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6677a83-9bbd-44fd-a97f-84cf93cbd768
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.