PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microbial synthesis of unique nanoscale minerals - challenges and prospects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this review, we highlight new insights and place the molecular mechanisms of the biogenesis of nanomaterials such as silicified frustules, coccoliths, magnetosomes and bacterial nanowires in the context of the complex biology of a microbial cell. The silicified frustules are formed by diatoms, which are a widespread group of organisms found in the oceans, fresh water, soil and wet surfaces. They are especially important in the oceans, where it is estimated that they contribute to 45% of total primary ocean production. Coccolith is a collective term that designates all of the biomineralized, calcified scales produced by extant and extinct haptophytes (single-celled algae). The orientation of magnetotactic bacteria is based on the presence of unique organelles, magnetosomes, which are intracellular, membrane-enclosed, nanometre-sized crystals of magnetic iron minerals. The discovery of bacterial conductive structures, called nanowires, has fascinated scientists for almost a decade. Nanowires enable bacteria to transfer electrons over micrometer distances to extracellular electron acceptors such as insoluble metal oxides or electrodes. The possible applications of these extremely interesting nanomaterials in different areas of life is also considered.
Rocznik
Strony
244--256
Opis fizyczny
Bibliogr. 123 poz.
Twórcy
  • Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology
autor
  • Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology
  • Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology
Bibliografia
  • AL-GHOUTI, M.A., KHRAISHEH, M.A.M., ALLEN, S.J., AHMAD, M.N., 2003. The removal of dyes from textile wastewater: A study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manag. 69, 229-238.
  • ALPHANDERY, E., 2014. Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Front. Bioeng. Biotechnol. 2, 1-6.
  • AW, M.S., SIMOVIC, S., ADDAI-MENSAH, J., LOSIC, D., 2011. Silica microcapsules from diatoms as new carrier for delivery of therapeutics. Nanomedicine. 6, 1159-1173.
  • AW, M.S., SIMOVIC, S., YU, Y., ADDAI-MENSAH, J., LOSIC, D., 2012. Porous silica microshells from diatoms as biocarrier for drug delivery applications. Powder Technol. 223, 52–58.
  • BAO, Z.H., SONG, M.K., DAVIS, S.C., CAI, Y., LIU, M., SANDHAGE, K.H., 2011. High surface area, micro/mesoporous carbon particles with selecTable 3-D biogenic morphologies for tailored catalysis, filtration, or adsorption. Energy Environ. Sci. 4, 3980-3984.
  • BELIAEV, A.S., KLINGEMAN, D.M., KLAPPENBACH, J.A., WU, L., ROMINE, M.F., TIEDJE, J.M., NEALSON, K.H., FREDRICKSON, J.K., ZHOU, J., 2005. Global transcriptome analysis of Shewanella Oneidensis MR-1 exposed to different terminal electron acceptors. J. Bacteriol. 20, 7138–7145.
  • BERTHOD, A., 1991. Silica: Backbone material of liquid chromatographic column packings. J. Chromatogr. 549, 1-28.
  • BHATTACHARYA, P., VOLCANIi, B. E., 1980. Sodium-dependent silicate transport in the apochlorotic marine diatom Nitzschia alba. Proc. Natl. Acad. Sci. U.S.A. 77, 6386−6390.
  • BJERG, J.T. BOSCHKER, H.T.S., LARSEN, S., BERRY, D., SCHMID, M., MILLO, D., TATARU, P., MEYSMAN,F.J.R., MICHAEL WAGNER, M., NIELSEN, L.M., SCHRAMM, A., 2018. Long-distance electron transport in individual, living cable bacteria. Proc. Natl. Acad. Sci. U.S.A. 22, 5786-5791.
  • BORMAN, A. H., De JONG, E. W., THIERRY, R., WESTBROEK, P., BOSH, L., 1987. Coccolith-associated polysaccharides from cells of Emiliania huxleyi (Haptophyceae). J. Phycol. 23, 118–125.
  • BOSTICK, C.D., MUKHOPADHYAY, S., PECHT, I., SHEVES, M., CAHEN, D., LEDERMAN, D., 2018. Protein bioelectronics: A review of what we do and do not know, Rep. Prog. Phys. 2, 1-158.
  • BOWN, P.R., GIBBS, S.J., SHEWARD, R., O’DEA, S.A., HIGGINS, D., 2014. Searching for cells: The potential of fossil coccospheres in coccolithophore research. J. Nannoplankton Res. 34, 5–21.
  • BRAARUD, T., DEFLANDRE, G., 1955. Terminology, nomenclature, and systematics of the Coccolithophoridae Micropaleontology, 1, 157-159.
  • BROWNLEE, C., TAYLOR, A., 2004. Cocolithopores. Springer. Berlin, Germany BRUNNER, E., RICHTHAMMER, P., EHRLICH, H., PAASCH, S., UEBERLEIN, S., VAN PEE, K.H., 2009. Chitinbased organic networks: An integral part of cell wall biosilica from the diatom Thalassiosira pseudonana. Angew. Chem. Int. Ed. 48, 9724-9727.
  • BUTCHER, K.S.A., FERRIS, J.M., PHILIPS, M.R., WINTREBERTT-FOQUET, M., WAH, J.W.J., JOVANOVIC, N., VYVERMAN, W., CHEPURNOV, V.A., 2005. Luminescence study of porous diatoms. Mater. Sci. Eng. C. 25, 658- 663. CALVERT, R., 1930, Diatomaceous earth. J. Chem. Educ. 17, 2829.
  • CHAUDHRY, Q., SCOTTER, M., BLACKBURN, J., ROSS, B., BOXALL, A., CASTLE, L., AITKEN, R., WATKINS, R., 2008. Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. 2008, 25, 241- 258.
  • CHILDERS, S.E., CIUFO, S., LOVLEY, D.R., 2002. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature. 416, 767-769.
  • COLOGGI, D.L., LAMPA-PASTIRK, S., SPEERS, A.M., KELLY, S.D., REGUERA, G., 2011. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism, Proc. Natl. Acad. Sci. U.S.A. 108, 15248- 15252.
  • CROS, L., ESTRADA, M., 2013, Holo-heterococcolithophore life cycles: Ecological implications. Mar. Ecol. Prog. Ser. 492, 57-68.
  • CUTNOW, P., SENIOR, L., KNIGHT, M.J., THAMATRAKOLN, K., HILDENBRAND, M., BOOTH, P.J., 2012. Expression, purification, and reconstitution of a diatom silicontransporter. Biochemistry, 51, 3776−3785.
  • De JONG, E. W., BOSCH, L., WESTBROEK, P., 1976. Isolation and characterization of a Ca2+ binding polysaccharide associated with Coccoliths of Emiliania huxleyi (Lohmann) Kamptner. Eur. J. Biochem. 70, 611–621.
  • DE STEFANO, L., RENDINA, I., DE STEFANO, M., BISMUTO, A., MADDALENA, P., 2005. Marine diatoms as optical chemical sensors. Appl. Phys. Lett. 87, 233902.
  • DIEUDONNÉ, A., PIGNOL, D., PRÉVÉRAL, S., 2019. Magnetosomes: biogenic iron nanoparticles produced by environmental bacteria. Appl. Microbiol. Biotechnol. 103, 3637-3649.
  • FALKOWSKI, J.A., RAVEN, P.G., 2007. Aquatic Photosynthesis. Princeton University Press, New Jersey, USA.
  • FILMAN, D.J., MARINO, S.F., WARD, J.E., YANG, L., MESTER, Z., BULLITT, E., LOVLEY D.R., STRAUSS, M., 2019. Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire. Commun. Biol. 2, 19-24.
  • FUHRMANN, T., LANDWEHR, S., EL RHARBI-KUCKI, M., SUMPER, M., 2004. Diatoms as living photonic crystals. Appl. Phys. B. 78, 257–260.
  • GAL, WIRTH, R., KOPKA, J., FRATZL, P., FAIVRE, D., SCHEFFEL, A., 2016. Macromolecular recognition directs calcium ions to coccolith mineralization sites. Science, 353, 590-593;
  • GALE, D.K., GUTU, T., JIAO, J., CHANG, C.H., RORRER, G.L., 2009. Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica. Adv. Funct. Mater. 19, 926-933.
  • GANDIA, D., GANDARIAS, L., RODRIGO, I., ROBLES-GARCÍA, J., DAS, R., GARAIO, E., GARCÍA, J.A., PHAN, M. H., SRIKANTH, H., ORUE, I., ALONSO, J., MUELA, A., FDEZ-GUBIED, M., 2019. Unlocking the potential of magnetotaticbacteria as magnetic hyperthermiaagents. Small, 15, 1-12.
  • GORBY, Y. A., YANINA, S., MCLEAN, J.S., ROSSO, K.M., MOYLES, D., DOHNALKOVA, A., BEVERIDGE, T.B., CHANG, I.S., KIM, B.H., KIM, K.S., CULLEY, D.E., REED, S.B., ROMINE, M.F., SAFFARINI, D.A., HILL, E.A., SHI, L., DWAYNE A. ELIAS, D.A., KENNEDY, D.W., PINCHUK, G., WATANABE, K., ISHII, S., LOGAN, B., NEALSON, K.H., FREDRICKSON J.K., 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS. 103, 11358-11363.
  • GRASSO, G., ZANE, D., DRAGONE, R., 2020. Microbial nanotechnology: challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials, 10, 11.
  • GROSS, M., 2012.The mysteries of the diatoms. Curr. Biol. 22, 581-585.
  • HAMM, C.E., MERKEL, R., SPRINGER, O., JURKOJC, P., MAIER, C., PRECHTEL, K., SMETACEK, V., 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature. 421, 841-843.
  • HECKY, R.E., MOPPER, K., KILHAM, P., DEGENS, T.E., 1973. The amino acid and sugar composition of diatom cellwalls. Mar. Biol. 19, 323-331.
  • HEIDELBERG, J. F., PAULSEN, I.T., NELSON, K.E., GAIDOS, E.J., NELSON, W.C., READ, T.D., EISEN, J.A., SESHADRI, R., WARD, N., METHE, B., CLAYTON, R.A., MEYER, T., TSAPIN, A., SCOTT, J., BEANAN, M., BRINKAC, L., DAUGHERTY, S., DEBOY, R.T., DODSON, R.J., DURKIN, A.S., HAFT, D.H., KOLONAY, J.F., MADUPU, R., PETERSON, J.D., UMAYAM, L., WHITE, O., WOLF, A.M., VAMATHEVAN, J., WEIDMAN, J., IMPRAIM, M., LEE, K., BERRY, K., LEE, C., MUELLER, J., KHOURI, H., GILL, J., UTTERBACK, T.R., MCDONALD, L.A., FELDBLYUM, T.V., SMITH, H.O., VENTER, J.C., NEALSON, K.H., FRASER. C.A., 2002 Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis, Nat. Biotechnol., 20, 1118- 1123.
  • HENRIKSEN, K., YOUNG, J., BOWN, P., STIPP, S., 2004. Coccolith biomineralisation studied with atomic force microscopy. Palaeontology 47, 725–743.
  • HILDEBRAND, M., VOLCANI, B.E., GASSMANN, W., SCHROEDER, J.I., 1997. A gene family of silicon transporters. Nature. 20, 688-689.
  • HOLMES, D.E., DANG, Y., WALKER, D.J.F., LOVLEY, D.R., 2016. The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer, Microb. Genom. 2, 1-20.
  • HSIEN, K.J., TSAI, W.T., SU, T.Y., 2009. Preparation of diatomite-TiO2 composite for photodegradation of bisphenol-A in water. J. Sol. Gel. Sci. Technol. 51, 63-69.
  • HULKOTI, N.I., TARANATH, T.C., 2014. Biosynthesis of nanoparticles using microbes- a review. Colloids Surf. B Biointerfaces. 121, 474-483.
  • ILER, R.K., 1979. The Chemistry of Silica. Wiley, New York, USA.
  • IVANOV, S.E., BELYAKOV, A.V., 2008. Diatomite and its applications. Glass Ceram. 65, 48-51.
  • JAMKHANDE, P.D., GHULE, W.N., BAMER, A.H., KALASKAR, M.G., 2019. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug. Deliv. Sci. Tec. 53, 101174.
  • KALOKORA, O. J., BURIYA, A. S., ASPLUND, M. E., GULLSTRÖM, M., MTOLERA, M., BJÖRK, M., 2020. An experimental assessment of algal calcification as a potential source of atmospheric CO2. PloS One, 15, e0231971.
  • KHAN, T., ABBAS, S., FARIQ, A., YASMIN, A., 2018. Exploring the Realms of Nature for Nanosynthesis. Springer, Cham, Switzerland.
  • KORUNIC, Z., 1998. Diatomaceous earths, a group of natural insecticides. J. Stored Prod. Res. 34, 87-97.
  • KRACKE, F., VASSILEV, I., KRÖMER, J. O., 2015. Microbial electron transport and energy conservation- the foundation for optimizing bioelectrochemical systems, Front. Microbiol. 6, 1-18.
  • KRÖGER, N., BERGSDORF, C., SUMPER, M., 1994. A new calcium-binding glycoprotein family constitutes a major diatom cell wall component.
  • EMBO J. 13, 4676-4683. KRÖGER, N., BERGSDORF, C., SUMPER, M., 1996. Frustulins: Domain conservation in a protein family associated with diatom cell walls. Eur. J. Biochem. 239, 259-264.
  • KRÖGER, N., DEUTZMANN, R., BERGSDORF, C., SUMPER, M., 2000. Species-specific polyamines from diatoms control silica morphology. Proc. Natl. Acad. Sci. USA. 297, 14133-14138.
  • KRÖGER, N., LEHMANN, G., RACHEL, R., SUMPER, M., 1997, Characterization of a 200-kDa diatom protein that is specifically associated with a silica-based substructure of the cell wall. Eur. J. Biochem. 250, 99-105.
  • KRÖGER, N., POULSEN, N., 2008. Diatoms- from cell wall biogenesis to nanotechnology. Annu. Rev. Genet. 42, 83- 107.
  • LAMPA-PASTIRK, S., VEAZEY, J.P., WALSH, K.A., FELICIANO, G.T., STEIDL, R.J., TESSMER, S.H., REGUERA, G., 2016 Thermally activated charge transport in microbial protein nanowires, Sci. Rep. 6, 1-9.
  • LEFEVRE, C., BAZYLINSKI, D., 2013. Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol. Mol. Biol. Rev. 77, 497-526.
  • LETTIERI, S., SETARO, A., DE STEFANO, L., DE STEFANO, M., MADDALENA, P., 2008. The gas-detection properties of light-emitting diatoms. Adv. Funct. Mater. 8, 1257-1264.
  • LI, C.W., CHU, S., LEE, M., 1989. Characterizing the silica deposition vesicle of diatoms. Protoplasma. 151, 158-163.
  • LEE, R. B. Y., MAVRIDOU, D. A. I., PAPADAKOS, G., McCLELLAND, H. L. O., RICKABY, R. E. M., 2016. The uronic acid content of coccolith-associated polysaccharides provides insight into coccolithogenesis and past climate. Nat. Commun 7, 13144.
  • LIU, X., WANG, S., XU, A., ZHANG, L., LIU, H., MA, Z.A., 2019. Biological synthesis of high-conductive pili in aerobic bacterium Pseudomonas aeruginosa. Appl. Microbiol., 103, 1535–1544.
  • LOVLEY, D.R., 2017. Fabrication of Sustainable Materials, mBio, 8, 1-7.
  • LOVLEY, D.R., HOLMES, D.E., NEVIN, K.P., 2004. Dissimilatory Fe (III) and Mn (IV) Reduction. Adv. Microbiol. Physiol. 49, 219-286.
  • LOVLEY, D.R., WALKER, D.J.F., 2019. Geobacter Protein Nanowires, Front. Microbiol. 10, 1-18.
  • MALVANKAR, N.S., VARGAS, M., NEVIN, K.P., FRANKS, A.F., LEANG, C., KIM, B.H., INOUE, K., MESTER, T., COVALLA, S.F., JOHNSON, J.P., ROTELLO, V.M., TUOMINEN, M.T., LOVLEY, D.R., 2011. Tunable metallic-like conductivity in microbial nanowire networks, Nat. Nanotechnol., 6, 573–579.
  • MALVANKAR, N.S., LOVLEY, D.R., 2012. Microbial nanowires: A new paradigm for biological electron transfer and bioelectronics. ChemSusChem. 5, 1039–1046.
  • MALVANKAR, N.S., VARGAS, M., NEVIN, K., TREMBLAY, P.L., EVANS-LUTTERODT, K., NYKYPANCHUK, D, MARTZ, E., TUOMINEN, M.T., LOVLEY, D.R., 2015. Structural basis for metallic-like conductivity in microbial nanowires, mBio. 6, 1–10.
  • MANN, D.G, DROOP S., 1996. Biogeography of freshwater algae. Developments in hydrobiology. Springer, Dordrecht, Netherlands.
  • MANN, D.G., VANORMELINGEN, P., 2013. An inordinate fondness? The number, distributions, and origins of diatom species. J. Eukaryot. Microbiol., 60, 414-420.
  • MARRON, A.O., ALSTON, M.J., HEAVENS, D., AKAM, M., CACCAMO, M., HOLLAND, P.W.H., WALKER, G., 2013. A family of diatom-like silicon transporters in the siliceous loricate choanoflagellates. Proc. R. Soc. 280.
  • MARSH, M, E., 2003. Regulation of CaCO3 formation in coccolithophores. Comp. Biochem. Physiol. B. 136, 743-754.
  • MARSH, M. E., DICKINSON, D. P., 1997. Polyanion-mediated mineralization — mineralization in coccolithophore (Pleurochrysis carterae) variants which do not express PS2, the most abundant and acidic mineral-associated polyanion in wild-type cells. Protoplasma 199, 9–17.
  • MARSH, M.E., RIDALL, A.L., AZADI, P., DUKE P.J., 2002. Galacturonomannan and Golgi-derived membrane linked to growth and shaping of biogenic calcite. J. Struct. Biol. 139, 39-45.
  • MARTIN-JÉZÉQUEL, V., HILDEBRAND, M., BRZEZINSKI, M.A., 2000. Silicon metabolism in diatoms: Implications for growth. J. Phycol. 36, 821-840.
  • MOHEIMANI, N.R. , WEBB, J.P., 2012. BOROWITZKA, M.A., Bioremediation and other potential applications of coccolithophorid algae: A review. Algal Res. 1, 120–133.
  • MONTEIRO, F.M., BACH, L.T., BROWNLEE, C., BOWN, P., RICKABY, R.E.M., POULTON, A.J., TYRRELL, T., BEAUFORT, L., DUTKIEWICZ, S., GIBBS, S., GUTOWSKA, M.A., LEE, R., RIEBESELL, U., YOUNG, J., RIDGWELL, A., 2016. Why marine phytoplankton calcify? Sci. Adv. 1501822.
  • MÜLLER, M.N., 2019. On the Genesis and Function of Coccolithophore Calcification. Front. Mar. Sci. 6, 1-5.
  • NAKAJIMA, T., VOLCANI, B.E., 1969. 3,4-Dihydroxyproline- a new amino acid in diatom cell wall. Science. 164, 1400-1401.
  • NAKAJIMA, T., VOLCANI, B.E., 1970. ε-N-Trimethyl-L-δ-hydroxysine phosphate and its nonphosphorylated compound in diatom cell walls. Biochem. Biophys. Res. Commun. 39, 28–33.
  • NEALSON, K.H., BELZ, A., MCKEE, B., 2002. Breathing metals as a way of life: geobiology in action, Antonie van Leeuwenhoek. 81, 215–222.
  • OSMANLIOGLU, A.E., 2007. Natural diatomite process for removal of radioactivity from liquid waste. Appl. Radiat. Isot. 65, 17-20.
  • OSTWALD, W., 1897, Studien über die bildung und umwandlung fester körper. Z. Phys. Chem. 22, 289-330.
  • PAASCHE, E., 2001. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification–photosynthesis interactions. Phycologia. 40, 503-529.
  • PAYNE, E.K., ROSI, N.L., XUE, C., MIRKIN, C.A., 2005. Sacrificial biological templates for the formation of nanostructured metallic microshells. Angew. Chem. 117, 5192-5195.
  • PERCH-NIELSEN, K., MCKENZIE, J.A., HE, Q., 1982. Bio-and isotope stratigraphy and the catastrophic extinction of calcareous nannoplankton at the Cretaceous/Tertiary boundary. Spec. Pap. Geol. Soc. Amer. 190, 353-371.
  • PICKETT-HEAPS, J.D., SCHMID, A.M.M., EDGAR, L.A., 1990. Progress in Phycological Research, Bristol, USA. POULTON, A.J., ADEY, T.R., BALCH, W.M., HOLLIGAN, P.M., 2007. Relating coccolithophore calcification rates to phytoplankton community dynamics: regional differences and implications for carbon export. Deep Sea Res. Part II Top. Stud. Oceanogr. 54, 538–557.
  • PRABHU, N. N., KOWSHIK, M., 2016. Magnetosomes: The bionanomagnets and its potential use in biomedical applications. J. Nanomed. Res. 2016, 3, 1-3.
  • QIAN, X. MESTER, T., MORGADO, L., ARAKAWA, T., SHARMA, M.L., INOUE, K., JOSEPH, C., SALGUEIRO, C.A., MARONEY, M.J., LOVLEY, D.R., 2011. Biochemical characterization of puri fi ed OmcS , a c -type cytochrome required for insoluble Fe ( III ) reduction in Geobacter sulfurreducen. BBA. 4, 404–412.
  • RAVEN, J. A., CRAWFURD, K., 2012. Environmental controls on coccolithophore calcification. Mar. Ecol. Prog. Ser. 470, 137–166.
  • REGUERA, G., MCCARTHY, K.D., MEHTA, T., NICOLL, J.S., TUOMINEN, M.T., LOVLEY, D.R., 2005. Extracellular electron transfer via microbial nanowires, Nature. 435, 1098–1101.
  • RIBEIRO, B.D., COELHO, M.A.Z., DE CASTRO, A.M., 2016. White Biotechnology for Sustainable Chemistry. The Royal Society of Chemistry, UK, London.
  • ROSENBERG, E., DELONG, E.F., STACKEBRANDT, E., LORY, S., THOMPSON, F., 2013. The prokaryotes: Prokaryotic physiology and biochemistry. Springer, Berlin, Germany.
  • ROUND, F.E., CRAWFORD, R.M., MANN, D.G., 1990. The diatoms: Biology and morphology of the genera. Cambridge University Press; Cambridge, UK.
  • ROWSON, J.D., LEADBEATER, B.S.C., GREEN, J.C., 1986, Calcium carbonate deposition in the motile (Crystallolithus) phase of Coccolithus pelagicus (Prymnesiophyceae). British Phycological Journal. 21, 359–370.
  • RUDER, W. C., LU, T., COLLINS, J. J., 2011. Synthetic biology moving into the clinic. Science. 333, 1248-1252.
  • SAKTHIVEL, S., VENKATESH, R.P., 2012. Solid state synthesis of nano-mineral particles. Int. J. Min. Sci. Techno. 22, 651-655. SANDHAGE, K.H., 2010. Materials “Alchemy": Shape-preserving chemical transformation of micro-to-macroscopic 3-D structures. JOM. 62, 32-43.
  • SCHEFFEL, A., POULSEN, N., SHIAN, S., KRÖGER, N., 2011. Nanopatterned protein microrings from a diatom that direct silica morphogenesis. Proc. Natl. Acad. Sci. USA. 108, 3175-3180.
  • SCHROEDER, D.C., BIGGI, G.F., HALL, M., DAVY, J., MARTÍNEZ, J.M., RICHARDSON, A.J., MALIN, G., WILSON, W.H., 2005. A genetic marker to separate Emiliania Huxleyi (Prymnesiophyceae) Morphotypes† J. Phycol. 41, 874-879.
  • SIEGEL, R.W., 1991. Materials science and technology. Willey-VCH, Weinheim, Germany.
  • SIMPSON, T.L., VOLCANI, B.E., 1981. Silicon and siliceous structures in biological systems. Springer-Verlag, New York, USA.
  • SKEFFINGTON, A.W., SCHEFFEL, A., 2018. Exploiting algal mineralization for nanotechnology: Bringing coccoliths to the fore. Curr. Opin. Biotechnol. 49, 57-63.
  • SUMPER, M., BRUNNER, E., 2006. Learning from diatoms: Nature’s tools for the production of nanostructured silica. Adv. Funct. Mat. 16, 17-26.
  • SUMPER, M., LEHMANN, G., 2006. Silica pattern formation in diatoms: Species-specific polyamine biosynthesis. ChemBioChem. 9, 1419-1427.
  • SUMPER, M., LORENZ, S., BRUNNER, E., 2003. Biomimetic control of size in the polyamine-directed formation of silica nanospheres. Angew. Chem. Int. Ed. 2003. 49, 5192-5195.
  • SUN, J., LI, Y., LIANG, X., WANG, P., 2011. Bacterial magnetosome: A novel biogenetic magnetic targeted drug carrier with potential multifunctions. J. Nanomater. 2011, 1-23.
  • SURE, S., TORRIERO, A.A.J., GAUR, A., LI, L.H., CHEN, Y., TRIPATHI, C., ADHOLEYA, A., ACKLAND, M.L., KOCHAR, M., 2015. Inquisition of Microcystis aeruginosa and Synechocystis nanowires: characterization and modelling, Antonie van Leeuwenhoek, 108, 1213–1225.
  • TAKANO, H., MANABE, E., HIRANO, M., OKAZAKI, M., 1993. Development of a rapid isolation procedure for coccolith ultrafine particles produced by coccolithophorid algae. Appl. Biochem. Biotech. 40, 239-247.
  • TESSON, B., HILDEBRAND M., 2010. Extensive and intimate association of the cytoskeleton with forming silica in diatoms: Control over patterning on the meso-and micro-scale. PLoS ONE, 5.
  • THAMATRAKOLN, K., ALVERSON, A.J., HILDEBRAND, M., 2006. Comparative sequence analysis of diatom silicon transporters: Toward a mechanistic model of silicon transport. J. Phycol. 42, 822-834.
  • THAMATRAKOLN K., HILDEBRAND, M., 2008. Silicon uptake in diatoms revisited: a model for saturable and nonsaturable uptake kinetics and the role of silicon transporters. Plant Physiol. 146, 1397–1407.
  • TRÉGUER, P., NELSON, D.M., VAN BENNEKOM, A.J., DEMASTER, D.J., LEYNAERT, A., QUÉQUINER, B., 1995. The silica balance in the world ocean: A reestimate. Science. 268, 375-379.
  • VAN DER WAL, P., DE JONG, E.W., WESTBROEK, P., DE BRUIJN, W.C., MULDER-STAPEL A.A., 1983. Polysaccharide localization, coccolith formation, and Golgi dynamics in the coccolithophorid Hymenomonas carterae. J. Ultrastruct. Res., 85, 139-158.
  • VARGAS, G., CYPRIANO, J., CORREA, T., LEAO, P., BAZYLINSKI, D., ABREU, F., 2018. Applications of magnetotactic bacteria, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: Mini-review. Molecules, 23, 1-25.
  • VOLCANI, B.E., 1978, Biochemistry of Silicon and Related Problems. Plenum Publishing; New York, USA.
  • VRIELING, E.G., GIESKES, W.W.C., BEELEN, T.P.M., 1999. Silicon deposition in diatoms: Control by the pH inside the silicon deposition vesicle. J. Phycol. 35, 548–559.
  • WANG, F., GU, Y., O'BRIEN, J.P., YI, S.M., YALCIN, S.E., SRIKANTH, V., SHEN, C., VU, D., ING, N.L., HOCHBAUM, A.I., EGELMAN, E.H., MALVANKAR, N.S., 2019. Structure of Microbial Nanowires Reveals Stacked Hemes that Transport Electrons over Micrometers’, Cell. Elsevier Inc. 177, 361-369.
  • WANG, X., LI, Y., ZHAO, J., YAO, H., CHU, S., SONG, Z., HE, Z., ZHANG, W., 2020. Magnetotactic bacteria: Characteristics and environmental applications. Front. Environ. Sci. Eng. 14, 1-14.
  • WENZL, S., HETT, R., RICHTHAMMER, P., SUMPER, M., 2008. Silacidins: Highly acidic phosphopeptides from diatom shells assist in silica precipitation in vitro. Angew. Chem. Int. Ed. 47, 1729-1732.
  • WESTBROEK, P., BROWN, C.W., BLEIJSWIJK, J.V., BROWNLEE, C., BRUMMER, G.J., CONTE, M., EGGE, J., FERNÁNDEZ, E., JORDAN, R., KNAPPERTSBUSCH, M., 1993. A model system approach to biological climate forcing. The example of Emiliania huxleyi . Glob. Planet. Change. 8, 27–46.
  • XIAOHUA, Q., MINGZHU, L., ZHENBIN, C., RUI, L., 2007. Preparation and properties of diatomite composite superabsorbent. Polym. Adv. Technol. 18, 184-193.
  • YAN, L. DA, H., ZHANG, S., LOPEZ, V.M., WANG, W., 2017. Bacterial magnetosome and its potential application. Magnetos. Microbiol. Res. 203, 19-28.
  • YAN, L., ZHANG, S., CHEN, P., LIU, H., YIN, H., LI, H., 2012. Magnetotactic bacteria, magnetosomes and their application. Microbiol. Res. 167, 507-519.
  • YOUNG, J.R., HENRIKSEN, K., 2003, Biomineralization within vesicles: the calcite of coccoliths. Rev. Mineral. Geochem. 54, 189–215.
  • ZHU, Q.W., ZHANG, Y.H., ZHOU, F.S., LV, F.Z., YE, Z.F., FAN, F.D., CHU, P.K., 2011. Preparation and characterization of Cu2O-ZnO immobilized on diatomite for photocatalytic treatment of red water produced from manufacturing of TNT. Chem. Eng. J. 171, 61-68.
Uwagi
This work was partially financed by a statutory activity subsidy from the Polish Ministry of Science and Higher Education (PMSHE) for the Department of Organic and Medicinal Chemistry Wrocław University of Science and Technology.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6670e89-7d82-444b-91b2-aefd95cf42b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.