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Abstract. In this paper, we study the nonoscillatory behavior of three classes of fractional
difference equations. The investigations are presented in three different folds. Unlike most
existing nonoscillation results which have been established by employing Riccati transfor-
mation technique, we employ herein an easily verifiable approach based on the fractional
Taylor’s difference formula, some features of discrete fractional calculus and mathematical
inequalities. The theoretical findings are demonstrated by examples. We end the paper by
a concluding remark.
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1. INTRODUCTORY BACKGROUND

In alignment with the extensive interest in the study of fractional differential equations
(FDEs) which has demonstrated high potential for real life applications [17, 24, 27],
the determination of oscillation or nonoscillation of solutions for FDEs has also
received significant attention amongst researchers. The recent literature has witnessed
the appearance of many papers which have reported the oscillatory behavior of
different types of FDEs; see the papers [1, 7, 15, 20, 21, 25, 29–31] and the references
quoted therein. On the other hand, the study of oscillation/nonoscillation of fractional
difference equations (FdEs), which are the discrete analogue of FDEs, has comparably
gained less consideration. In particular, few results have been released concerning
the existence of nonoscillatory solutions of FdEs; we refer herein to some relevant
oscillation results for FdEs [2, 3, 5, 11–13].
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As in the case of integer order difference equations versus integer order differential
equations, the use and importance of FdEs as an approximations to FDEs afford
a powerful method for the analysis of electrical, mechanical, thermal and other systems
in which there are a recurrence of identical sections. Indeed, it has been realized
that the study of the behavior of electrical wave filters, multistage amplifiers and
insulator strings has been greatly facilitated by FdEs [19,26]. Oscillation/nonoscillation
of physical waves which could be adequately described by FdEs are amongst the most
attractive topic for scientists and engineers [10,28].

In this paper, we investigate the nonoscillatory solutions of the fractional difference
equations of the following form

{
C∆αy(t) = e(t+ α) + f(t+ α, x (t+ α)), t ∈ N1−α,

y(0) = c0,
(1.1)

where 0 < α ≤ 1, C∆α is a Caputo like discrete fractional difference, f : N1 × R→ R
is continuous with respect to t and x, and satisfies xf(t, x) > 0 for x 6= 0,
Nt = {t, t+ 1, t+ 2, . . .} and e is a positive sequence. In [21], the authors studied the
asymptotic behavior of nonoscillatory solutions of the fractional differential equations
of the form

CD
α
a y = e (t) + f (t, x) .

Strongly motivated by the idea in [21], in this study, we will carry on our investigation
for the following particular cases of Eq. (1.1):

y(t) = ∆(r(t)|∆x(t)|δ−1∆x(t)), δ ≥ 1, (1.2)
y(t) = ∆x(t), (1.3)
y(t) = x(t), (1.4)

where r is a positive sequence. The investigations are presented in three different
folds. Unlike most established results in the literature which mainly depend on the
employment of Riccati transformation, our approach is based on the fractional Taylor’s
difference formula, some features of the newly defined discrete fractional calculus and
mathematical inequalities.

The rest of the paper is organized as follows: Section 1 presents descriptive in-
troduction that gives background on FDEs, states the prominence of FdEs and
introduces the targeted problems. Section 2 assembles essential preliminaries needed
prior to proceeding to the main results. Section 3 is devoted to the main theorems
which provide sufficient conditions for the nonoscillatory behavior of solutions of the
proposed problems. We provide examples as an application in Section 4. At the end,
a short remark is concluded.

2. FUNDAMENTAL PRELIMINARIES

In this section, we assemble basic definitions and lemmas on discrete fractional calculus.
The presented identities and statements serve as essential prerequisites for the proofs
of the main results.
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Definition 2.1. By a solution of Eq. (1.1), we mean a real-valued sequence x (t) satis-
fying Eq. (1.1) for t ∈ Nt0 with t0 ∈ N1. A solution x (t) of Eq. (1.1) is called oscillatory
if for every positive integers T0 > t0 there exists t ≥ T0 such that x (t)x (t+ 1) ≤ 0,
otherwise it is called non-oscillatory.
Definition 2.2 ([19]). The generalized falling function is defined by

t(r) = Γ (t+ 1)
Γ (t− r + 1) ,

for any t, r ∈ R for which the right hand-side is defined. Here Γ denotes the Euler’s
gamma function. We also use the standard extensions of the domain of this rising
function by defining it to be zero whenever the numerator is well defined, but the
denominator is not defined.
Definition 2.3 ([8]). Let ν > 0. The ν-th fractional sum of x is defined by

∆−νa x(t) = 1
Γ (ν)

t−ν∑

s=a
(t− s− 1)(ν−1)x(s), (2.1)

where x is defined for s = a mod(1) and ∆−νx is defined for t = (a + ν) mod(1).
In (2.1), it is to note that the fractional sum operator ∆−ν maps functions defined
on Na to functions defined on Na+ν .

Definition 2.4 ([6]). Let µ > 0 and m − 1 < µ < m, where m denotes a positive
integer, m = dµe, and d.e is the ceiling of a number. Set ν = m−µ. The µ-th fractional
Caputo like difference is defined as

C∆µx(t) = ∆−ν(∆mx(t)) = 1
Γ (ν)

t−ν∑

s=a
(t− s− 1)(ν−1)(∆mx)(s), (2.2)

where ∆m is the m−th order forward difference operator. The fractional Caputo like
difference C∆µ maps functions defined on Na to functions defined on Na−µ.

Lemma 2.5 ([22]). If X and Y are nonnegative numbers, then we have

Xk − (1− k)Y k − kXY k−1 ≤ 0, for 0 < k < 1,

where the equality holds if and only if X = Y.

Lemma 2.6 ([14]). Assume that β > 1 and γ > 0, then
[
t(−γ)

]β
<

Γ(1 + βγ)
Γβ(1 + γ) t

(−βγ)

for t ∈ N1.
Lemma 2.7 ([18]). Let a ∈ R, µ ∈ R\{. . . ,−2,−1, 0}, ν>0 and (t− a)(µ) : Na+µ→R.
Then,

∆−νa+µ (t− a)(µ) = Γ(µ+ 1)
Γ(µ+ ν + 1) (t− a)(µ+ν) for t ∈ Na+µ+ν . (2.3)
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Lemma 2.8. Initial value problem (IVP) (1.1) is equivalent to the following summation
equation

y(t) = c0 + 1
Γ(α)

t−α∑

s=1−α
(t− s− 1)(α−1)[e(s+α) + f(s+α, x(s+α))], t ∈ N1. (2.4)

Proof. The proof is similar that of Lemma 2.2 in [14].

Lemma 2.9. Assume p > 1, 0 < α ≤ 1, p(α− 1) + 1 > 0 and γ = 2− α− 1
p . Then

one has
(t− s− 1)(pα−p) ≥ (t− s− 1 + α+ p (1− α)− 1)(pα−p)

and
(s)(pγ−p) ≥ (s+ p (α− 1) + 1)(pγ−p)

,

where

t ∈ N1 and s ∈ {1− (pα− p) , 2− (pα− p) , . . . , t− 2− (pα− p)} ·

Proof. The proof is similar that of Corollary 2.9 in [16].

Lemma 2.10 (Discrete Gronwall’s inequality, [23]). Let x and m be nonnegative
sequences and c be a nonnegative constant. If

x (t) ≤ c+
t∑

s=0
m (s)x (s) for t ≥ 0.

Then, it holds

x (t) ≤ c exp
(

t∑

s=0
m (s)

)
for t ≥ 0.

3. MAIN RESULTS

This section is devoted to the main results. The results are stated and proved in three
separate subsections.

3.1. NONOSCILLATION SOLUTIONS OF EQ. (1.1) WITH (1.2)

Consider the equation
{
C∆α+1(r(t)|∆x|δ−1∆x

)
= e(t+ α) + f(t+ α, x (t+ α)), t ∈ N1−α,

∆(r(t)|∆x|δ−1∆x)|t=0 = c0.
(3.1)

It is assumed that the function f satisfies

xf(t, x) ≤ t(γ−1)h(t)|x|β+1, x 6= 0 (3.2)
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for some function h : (t1,∞) → R+ and real numbers γ > 0 and 0 < β < δ.
For the sake of simplification, we define

R(t) :=
t−1∑

s=1
r−1/δ(s)

and

g1(t) :=
t−α∑

s=t1−α
(t− s− 1)(α−1)(s+ α)(γ−1)mβ/(β−δ)(s+ α)hδ/(δ−β)(s+ α), (3.3)

where t1 ∈ N1 and m is a positive sequence.

Theorem 3.1. Let q be a conjugate number of p > 1 (that is, q = p/(p − 1)),
p(α− 1) + 1 > 0, and γ = 2− α− 1

p . Suppose that for any positive integer t1, we have

∞∑

s=t1−α
(s+ α)qRqδ(s+ α)mq(s+ α) <∞, (3.4)

lim sup
t→∞

1
t

t−1∑

s=t1

g1(s) <∞, (3.5)

lim inf
t→∞

1
t

t−1∑

u=t1

u−α∑

s=1−α
(u− s− 1)(α−1)e(s+ α) > −∞,

lim sup
t→∞

1
t

t−1∑

u=t1

u−α∑

s=1−α
(u− s− 1)(α−1)e(s+ α) <∞.

(3.6)

Then every nonoscillatory solution x of (3.1) satisfies

|x(t)| = O(t1/δR(t)), t→∞.

Proof. Let x be a nonoscillatory solution of (3.1), say x(t) > 0 for all t ∈ Nt1 , where t1
is a positive integer. Let F (t) := f(t, x(t)) and t ∈ Nt1 . Then by Lemma 2.8, we have

y(t) ≤ c0 + 1
Γ(α)

t1−1−α∑

s=1−α
(t− s− 1)(α−1)|F (s+ α)|

+ 1
Γ(α)

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α)

+ 1
Γ(α)

t−α∑

s=t1−α
(t− s− 1)(α−1)f(s+ α, x(s+ α)).



554 S.R. Grace, J. Alzabut, S. Punitha, V. Muthulakshmi, and H. Adıgüzel

By using (3.2), we get

y(t) ≤ c0 + 1
Γ(α)

t1−1−α∑

s=1−α
(t− s− 1)(α−1) |F (s+ α)|

+ 1
Γ(α)

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α)

+ 1
Γ(α)

t−α∑

s=t1−α
(t− s− 1)(α−1)(s+ α)(γ−1)h(s+ α)xβ(s+ α)

and

y(t) ≤ c0 + 1
Γ(α)

t1−1−α∑

s=1−α
(t− s− 1)(α−1)|F (s+ α)|

+ 1
Γ(α)

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α)

+ 1
Γ(α)

t−α∑

s=t1−α

{
(t− s− 1)(α−1)(s+ α)(γ−1)

·
[
h(s+ α)xβ(s+ α)−m(s+ α)xδ(s+ α)

]}

+ 1
Γ(α)

t−α∑

s=t1−α
(t− s− 1)(α−1)(s+ α)(γ−1)m(s+ α)xδ(s+ α).

(3.7)

Setting X = hδ/β(s+ α)xδ(s+ α), Y =
(
δ
βm(s+ α)h−δ/β(s+ α)

)δ/β−δ
and k = β

δ ,

then using Lemma 2.5, we deduce that

h(s+ α)xβ(s+ α)−m(s+ α)xδ(s+ α) ≤ λ1m
β/(β−δ)(s+ α)hδ/δ−β(s+ α),

where λ1 = (1− β/δ)
(
β/δ

) β
β−δ . Thus, (3.7) becomes

y(t) ≤ c0 + 1
Γ(α)

t1−1−α∑

s=1−α
(t− s− 1)(α−1)|F (s+ α)|

+ 1
Γ(α)

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α) + λ1

Γ(α)g1(t)

+ 1
Γ(α)

t−α∑

s=t1−α
(t− s− 1)(α−1)(s+ α)(γ−1)m(s+ α)xδ(s+ α),

where g1 is defined by (3.3). Summing from t1 to t− 1 and interchanging the order of
the last summation, we have

r(t)(∆x(t))δ ≤ w(t), (3.8)
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where
w(t) := r(t1)(∆x(t1))δ + |c0| (t− t1)

+ 1
Γ(α)

t−1∑

u=t1

t1−1−α∑

s=1−α
(t1 − s− 1)(α−1)|F (s+ α)|

+ 1
Γ(α)

t−1∑

u=t1

u−α∑

s=1−α
(u− s− 1)(α−1)e(s+ α) + λ1

Γ(α)

t−1∑

s=t1

g1(s)

+ 1
Γ(1 + α)

t−α−1∑

s=t1−α
(t− s− 1)(α)(s+ α)(γ−1)m(s+ α)xδ(s+ α).

Summing (3.8) from t1 to t − 1 and noting that w(t) is an increasing function of t,
we have

x(t) ≤ d1 +
t−1∑

s=t1

r−1/δ(s)w1/δ(s),

≤ d1 + w1/δ(t)
t−1∑

s=1
r−1/δ(s) = d1 + w1/δ(t)R(t),

(3.9)

where d1 = x(t1). By applying the elementary inequality (A+B)δ ≤ 2δ−1(Aδ +Bδ),
we have

xδ(t)
Rδ(t) ≤ 2δ−1dδ1 + 2δ−1w(t).

On other hand, by applying the Hölder inequality, Lemma 2.6 and Lemma 2.9,
we have

t−α−1∑

s=t1−α
(t− s− 1)(α−1)(s+ α)(γ−1)m(s+ α)xδ(s+ α)

≤
[
t−α−1∑

s=t1−α

(
(t− s− 1)(α−1)

)p(
(s+ α)(γ−1)

)p
]1/p

·
[
t−α−1∑

s=t1−α
mq(s+ α)xδq(s+ α)

]1/q

<

[(Γ(1− pα+ p)
Γp(2− α)

)(Γ(1− pγ + p)
Γp(2− γ)

)]1/p

·
[

t−(pα−p+1)∑

s=−1−(pα−p)

(
(t− s− 1)(pα−p)

)(
(s)(pγ−p)

)]1/p

·
[
t−α−1∑

s=t1−α
mq(s+ α)xδq(s+ α)

]1/q

.
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From Definition 2.3 and then using Lemma 2.7, we get

t−α−1∑

s=t1−α
(t− s− 1)(α−1)(s+ α)(γ−1)m(s+ α)xδ(s+ α)

≤
[(Γ(1− pα+ p)

Γp(2− α)

)(Γ(1− pγ + p)
Γp(2− γ)

)]1/p

·
[

∆−(pα−p+1)
−1−(pα−p)(t)

(pγ−p)
][

t−α−1∑

s=t1−α
mq(s+ α)xδq(s+ α)

]1/q

=
[(Γ(1− pα+ p)

Γp(2− α)

)(Γ(1− pγ + p)
Γp(2− γ)

)]1/p

·
[

Γ[p(γ − 1) + 1]
Γ[p(γ − 1) + p(α− 1) + 2](t)

(pα−p+1+pγ−p)
]1/p

·
[
t−α−1∑

s=t1−α
mq(s+ α)xq(s+ α)

]1/q

,

or

t−α∑

s=t1−α
(t− s− 1)(α−1)(s+ α)(γ−1)m(s+ α)xδ(s+ α)

≤M1

[
t−α−1∑

s=t1−α
mq(s+ α)xδq(s+ α)

]1/q

,

where by the definition of γ, pγ − p+ pα− p+ 1 = 0 and

M1 =
[(Γ(1− pα+ p)

Γp(2− α)

)(Γ(1− pγ + p)
Γp(2− γ)

)]1/p

·
[

Γ[p(γ − 1) + 1]
Γ[p(γ − 1) + p(α− 1) + 2]

]1/p

.

Thus (3.9) becomes

xδ(t)
Rδ(t) ≤ At+ M1t

Γ (α)

[
t−α−1∑

s=t1−α
mq(s+ α)xδq(s+ α)

]1/q

,
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where, in view of (3.5) and (3.6), A is an upper bound for 2δ−1 times

r(t1)∆x(t1)
t

+ |c0|+ dδ1 + 1
tΓ (α)

t−1∑

u=t1

t1−1−α∑

s=1−α
(u− s− 1)(α−1)|F (s+ α)|

+ 1
tΓ (α)

t−1∑

u=t1

u−α∑

s=1−α
(u− s− 1)(α−1)e(s+ α) +

t−1∑

s=t1

λ1
tΓ (α)g1(s).

Therefore, we have

(
x(t)

t1/δR(t)

)qδ
≤
(
A+ M1

Γ (α)

(
t−α−1∑

s=t1−α
(s+ α)qRqδ(s+ α)mq(s+ α)

·
[ x(s+ α)

(s+ α)1/δR(s+ α)

]δq
)1/q)q

≤2q−1Aq + 2q−1 Mq
1

Γq(α)

t−α−1∑

s=t1−α
(s+ α)qRqδ(s+ α)mq(s+ α)

·
[ x(s+ α)

(s+ α)1/δR(s+ α)

]δq
.

Finally, if we apply the Lemma 2.10, we have

( x(t)
t1/δR(t)

)q
≤ Aq22(q−1) Mq

1
Γq (α) exp

(
t−α−1∑

s=t1−α
(s+ α)qRqδ(s+ α)mq(s+ α)

)
.

By using (3.4), we have

lim sup
t→∞

x(t)
t1/δR(t) <∞.

This completes the proof.

Remark 3.2. If x(t) is eventually negative, then we can set y = −x to see that
y satisfies (1.1) with e(t) replaced by −e(t) and f(t, x) by −f(t,−y). It follows in the
similiar manner that

lim sup
t→∞

−x(t)
t1/δR(t) <∞.

3.2. NONOSCILLATION SOLUTIONS OF EQ. (1.1) WITH (1.3)

Consider the equation
{
C∆α+1x(t) = e(t+ α) + f(t+ α, x (t+ α)), t ∈ N1−α,

∆x(t)|t=0 = c0.
(3.10)
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It is assumed that the function f satisfies

xf(t, x) ≤ t(γ−1)h(t)|x|λ+1, x 6= 0, (3.11)

for some function h : (t1,∞)→ R+ and real numbers γ > 0 and 0 < λ < 1. For clarity,
we define

g2(t) :=
t−α∑

s=t1−α
(t− s− 1)(α−1)(s+ α)(γ−1)mλ/(λ−1)(s+ α)h1/(1−λ)(s+ α), (3.12)

where m is a positive sequence.

Theorem 3.3. Let q be a conjugate number of p > 1, (that is, q = p/(p − 1)),
p(α− 1) + 1 > 0, and γ = 2− α− 1

p . Suppose that for any positive integer t1, we have

∞∑

s=t1−α
(s+ α)qmq(s+ α) <∞, (3.13)

lim sup
t→∞

g2(t) <∞, (3.14)

lim inf
t→∞

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α) > −∞,

lim sup
t→∞

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α) <∞.

(3.15)

Then every nonoscillatory solution x(t) of (3.10) satisfies

|x(t)| = O(t), as t→∞.

Proof. Let x be a nonoscillatory solution of (3.10), say x(t) > 0 for all t ∈ Nt1 , where
t1 is a positive integer. Let F (t) := f(t, x(t)) and t ∈ Nt1 . Then by Lemma 2.8,
we have

y(t) ≤c0 + 1
Γ(α)

t1−1−α∑

s=1−α
(t− s− 1)(α−1)|F (s+ α)|

+ 1
Γ(α)

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α)

+ 1
Γ(α)

t−α∑

s=t1−α
(t− s− 1)(α−1)f(s+ α, x(s+ α)).
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By using (3.11), we get

y(t) ≤ c0 + 1
Γ(α)

t1−1−α∑

s=1−α
(t− s− 1)(α−1) |F (s+ α)|

+ 1
Γ(α)

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α)

+ 1
Γ(α)

t−α∑

s=t1−α
(t− s− 1)(α−1)(s+ α)(γ−1)h(s+ α)xλ(s+ α)

and

y(t) ≤ c0 + 1
Γ(α)

t1−1−α∑

s=1−α
(t− s− 1)(α−1)|F (s+ α)|

+ 1
Γ(α)

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α)

+ 1
Γ(α)

t−α∑

s=t1−α

{
(t− s− 1)(α−1)(s+ α)(γ−1)

· [h(s+ α)xλ(s+ α)−m(s+ α)x(s+ α)]
}

+ 1
Γ(α)

t−α∑

s=t1−α
(t− s− 1)(α−1)(s+ α)(γ−1)m(s+ α)x(s+ α)·

(3.16)

Taking X = h1/λ(s + α)x(s + α), Y =
(

1
λm(s + α)h−1/λ(s + α)

)1/λ−1
and k = λ.

Then using Lemma 2.5, we see that

h(s+ α)xλ(s+ α)−m(s+ α)x(s+ α) ≤ λ1m
λ/(λ−1)(s+ α)h1/1−λ(s+ α),

where λ1 = (1− λ)λ λ
1−λ . Thus (3.16) becomes,

∆x(t) ≤ c0 + 1
Γ(α)

t1−1−α∑

s=1−α
(t− s− 1)(α−1)|F (s+ α)|

+ 1
Γ(α)

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α) + λ1

Γ(α)g2(t)

+ 1
Γ(α)

t−α∑

s=t1−α
(t− s− 1)(α−1)(s+ α)(γ−1)m(s+ α)x(s+ α),

where g2 is defined by (3.12).
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It follows that
∆x(t) ≤ w(t), (3.17)

where

w(t) := c0 + 1
Γ(α)

t1−1−α∑

s=1−α
(t− s− 1)(α−1)|F (s+ α)|

+ 1
Γ(α)

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α) + λ1

Γ(α)g2(t)

+ 1
Γ(α)

t−α∑

s=t1−α
(t− s− 1)(α−1)(s+ α)(γ−1)m(s+ α)x(s+ α).

Summing (3.17) from t1 to t− 1 and noting that w(t) is an increasing function of t,
we have

x(t) ≤d1 +
t−1∑

s=t1

w(s), d1 = x(t1)

≤(d1 + w(t))t.

Proceeding as in the proof of Theorem 3.1, we have

x(t) ≤ At+ M1t

Γ(α)

[
t−α−1∑

s=t1−α
mq(s+ α)xq(s+ α)

]1/q

,

where

M1 =
[(Γ(1− pα+ p)

Γp(2− α)

)(Γ(1− pγ + p)
Γp(2− γ)

)]1/p

·
[

Γ[p(γ − 1) + 1]
Γ[p(γ − 1) + p(α− 1) + 2]

]1/p

.

In view of (3.14) and (3.15), A is an upper bound for

c0 + 1
Γ(α)

t1−1−α∑

s=1−α
(t− s− 1)(α−1)|F (s+ α)|

+ 1
Γ(α)

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α) + λ1

Γ(α)g2(t).
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Therefore, we have

(
x(t)
t

)q
≤
(
A+ M1

Γ (α)

(
t−α−1∑

s=t1−α
mq(s+ α)xq(s+ α)

)1/q)q

≤ 2q−1Aq + 2q−1 Mq
1

Γq (α)

t−α−1∑

s=t1−α
(s+ α)qmq(s+ α)

[x(s+ α)
s+ α

]q
.

Applying Lemma 2.10, we have

(x(t)
t

)q
≤ Aq22(q−1) Mq

1
Γq (α) exp

(
t−α−1∑

s=t1−α
(s+ α)qmq(s+ α)

)
.

By using (3.13), we have

lim sup
t→∞

x(t)
t

<∞,

which ends the proof.

Remark 3.4. If x(t) is eventually negative, then we can set y = −x to see that
y satisfies (1.1) with e(t) replaced by −e(t) and f(t, x) by −f(t,−y). It follows in the
similiar manner that

lim sup
t→∞

−x(t)
t

<∞.

3.3. NONOSCILLATION SOLUTIONS OF EQ. (1.1) WITH (1.4)

Consider the equation
{
C∆αx(t) = e(t+ α) + f(t+ α, x (t+ α)), t ∈ N1−α,

x(t)|t=0 = c0.
(3.18)

It is assumed that the conditions (3.11) and (3.12) hold.

Theorem 3.5. Let q be a conjugate number of p > 1, (that is, q = p/(p − 1)),
p(α − 1) + 1 > 0, and γ = 2 − α − 1

p . Suppose that for any positive integer t1,
(3.14) and (3.15) hold and

∞∑

s=t1−α
mq(s+ α) <∞. (3.19)

Then every nonoscillatory solution x of (3.18) is bounded.
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Proof. Let x be a nonoscillatory solution of (3.18), say x(t) > 0 for all t ∈ Nt1 , where
t1 is a positive integer. Let F (t) := f(t, x(t)) and t ∈ Nt1 . Then by Lemma 2.8,
we have

x(t) ≤ c0 + 1
Γ(α)

t1−1−α∑

s=1−α
(t− s− 1)(α−1)|F (s+ α)|

+ 1
Γ(α)

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α)

+ 1
Γ (α)

t−α∑

s=t1−α
(t− s− 1)(α−1)f(s+ α, x(s+ α)).

By using (3.11), we get

x(t) ≤ c0 + 1
Γ(α)

t1−1−α∑

s=1−α
(t− s− 1)(α−1) |F (s+ α)|

+ 1
Γ(α)

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α)

+ 1
Γ(α)

t−α∑

s=t1−α
(t− s− 1)(α−1)s(γ−1)h(s+ α)xλ(s+ α)

and

x(t) ≤ c0 + 1
Γ(α)

t1−1−α∑

s=1−α
(t− s− 1)(α−1)|F (s+ α)|

+ 1
Γ(α)

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α)

+ 1
Γ(α)

t−α∑

s=t1−α

{
(t− s− 1)(α−1)(s+ α)(γ−1)

· [h(s+ α)xλ(s+ α)−m(s+ α)x(s+ α)]
}

+ 1
Γ(α)

t−α∑

s=t1−α
(t− s− 1)(α−1)(s+ α)(γ−1)m(s+ α)x(s+ α).

(3.20)

Putting X = h1/λ(s+α)x(s+α), Y =
(

1
λm(s+α)h−1/λ(s+α)

)1/λ−1
and k = λ,

and then using Lemma 2.5, we get

h(s+ α)xλ(s+ α)−m(s+ α)x(s+ α) ≤ λ1m
λ/(λ−1)(s+ α)h1/1−λ(s+ α),
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where λ1 = (1− λ)λ λ
1−λ . Thus, (3.20) becomes

x(t) ≤ c0 + 1
Γ(α)

t1−1−α∑

s=1−α
(t− s− 1)(α−1)|F (s+ α)|

+ 1
Γ(α)

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α)

+ λ1
Γ(α)

t−α∑

s=t1−α
(t− s− 1)(α−1)(s+ α)(γ−1)mλ/(λ−1)(s+ α)h1/1−λ(s+ α)

+ 1
Γ(α)

t−α∑

s=t1−α
(t− s− 1)(α−1)(s+ α)(γ−1)m(s+ α)x(s+ α).

By using (3.12), we obtain
x(t) ≤ w(t), (3.21)

where

w(t) := c0 + 1
Γ(α)

t1−1−α∑

s=1−α
(t− s− 1)(α−1)|F (s+ α)|

+ 1
Γ(α)

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α) + λ1

Γ(α)g2(t)

+ 1
Γ(α)

t−α∑

s=t1−α
(t− s− 1)(α−1)s(γ−1)m(s+ α)x(s+ α).

Proceeding as in the proof of Theorem 3.1, we have

x(t) ≤ A+ M1
Γ (α)

[
t−α∑

s=t1−α
mq(s+ α)xq(s+ α)

]1/q

,

where

M1 =
[(Γ(1− pα+ p)

Γp(2− α)

)(Γ(1− pγ + p)
Γp(2− γ)

)]1/p

·
[

Γ[p(γ − 1) + 1]
Γ[p(γ − 1) + p(α− 1) + 2]

]1/p

.

In view of (3.14) and (3.15), A is an upper bound for

c0 + 1
Γ(α)

t1−1−α∑

s=1−α
(t− s− 1)(α−1)|F (s+ α)|

+ 1
Γ(α)

t−α∑

s=1−α
(t− s− 1)(α−1)e(s+ α) + λ1

Γ(α)g2(t).
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Therefore, we have

xq(t) ≤
(
A+ M1

Γ(α)

(
t−α∑

s=t1−α
mq(s+ α)xq(s+ α)

)1/q)q

≤ 2q−1Aq + 2q−1 Mq
1

Γq(α)

t−α∑

s=t1−α
mq(s+ α)xq(s+ α).

Finally, if we apply Lemma 2.10, we have

xq(t) ≤ Aq22(q−1) Mq
1

Γq(α) exp
(

t−α∑

s=t1−α
mq(s+ α)

)
.

By using (3.19), we end up with

lim sup
t→∞

x(t) <∞,

which completes the proof.

Remark 3.6. If x is eventually negative, then we can set y = −x to see that y satisfies
(1.1) with e(t) replaced by −e(t) and f(t, x) by −f(t,−y). It follows in similar manner
that

lim sup
t→∞

−x(t) <∞.

4. APPLICATIONS

In this section, we present some examples for the illustrate the obtained results.

Example 4.1. Consider the following fractional difference equation

C∆7/4x (t) = e−3(t+3/4) +
Γ(t+ 7

4 )
Γ(t+ 2) e

−(t+3/4)x1/3(t+ 3/4), t ∈ N1/4, (4.1)

where α = 3/4, e (t)=e−3t and f (t, x) = Γ(t+1)
Γ(t+ 5

4 )e
−tx1/3. If we consider p = q = 2,

γ = 3/4 and h (t) = e−t = m (t), then it is straightforward to check that all conditions
of Theorem 3.3 are satisfied and then consequently every nonoscillatory solution x of
Eq. 4.1 satisfies

|x(t)| = O(t), t→∞.
Example 4.2. Consider the following fractional difference equation

C∆x(t) = e−2(t+1) + Γ(t+ 2)
Γ(t+ 8

3 )
e−(t+1)x1/2(t+ 1), t ∈ N0. (4.2)
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In view of equation (3.18), the above equation (4.2) is a particular case with

e(t) = e−2t, f(t, x) = Γ(t+ 1)
Γ(t+ 5

3 )
e−tx1/2, α = 1, and h(t) = e−t.

Putting p = 3
2 > 1. Then q = p

p−1 = 3, γ = 1
3 , and p(α − 1) + 1 = 1 > 0. If we let

m(t) = h(t), then

g(t) =
t−1∑

s=0
(t− s− 1)(1−1)(s+ 1)( 1

3−1)e−(s+1) =
t−1∑

s=0

Γ(s+ 1)
Γ(s+ 1 + 2

3 )
e−(s+1),

which is convergent as t→∞. Moreover, we have

∞∑

s=t1−1
mq(s+ 1) =

∞∑

s=t1−1
e−3(s+1) <∞

It follows that

lim
t→∞

t−1∑

s=0
(t− s− 1)(α−1)|e(s+ 1)| = lim

t→∞

t−1∑

s=0
(t− s− 1)(1−1)e−2(s+1) <∞.

Therefore, by Theorem 3.5 every nonoscillatory solution of (4.2) is bounded.

5. CONCLUSION

Following the trend in studying qualitative properties of solutions of fractional differ-
ence equations, we investigated the nonoscillatory behavior of three different classes
of fractional difference equations. The main results are obtained by the use of the
fractional Taylor’s difference formula, some features of discrete fractional calculus and
certain mathematical inequalities. To ensure consistency with the theoretical findings,
numerical examples are provided. We claim that our results are new and have not
been considered earlier.
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