PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Pineapple responses to postharvest applications of ABA, chitosan, and decrowning on the severity of internal browning and other fruit qualities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The shelf life of pineapple is significantly influenced by storage temperature and can be prolonged by maintaining an optimal temperature range of 5-12°C. However, there is still the problem of internal browning (IB) in the long-term storing of fresh harvest at cold temperatures. Postharvest application of 380 μM ABA (Abscisic Acid) to the crown, which is a source of ABA endogenous was found to suppress IB, while the concentration of 95 μM was not effective. Therefore, this research aimed to determine the response of GP3 and MD2 clones to postharvest treatment with the application of 50 mg/L ABA, chitosan and decrowning on the IB severity and other fruit qualities. The experimental design used a Completely Randomized Design with 3 factors of clone (GP3 and MD2), decrowning (crown and crownless), and fruit coating [chitosan 1%, ABA 50 mg/L, ABA + chitosan mix, and control (H2O)]. The fruits were kept at 7°C and observed at 0, 3, 6, 9, 16, 23, 30, and 37 days. The results showed that MD2 was significantly lower IB than GP3 and IB severity negatively correlated with ascorbic acid (AsA) content. MD2 had lower fruit weight loss (FWL) and skin dehydration (SD), higher AsA, soluble solid content (SSC), and SSC/titratable acidity (STA) ratios compared to GP3. The crown + ABA treatment decreased the IB severity of GP3, with a level of 0.75% after 37 days which was lower than crown + H2O by 9.17% and crownless + H2O by 8.42%. ABA treatment also showed higher SD and FWL, while AsA, SSC, TA, and STA were not different from the control.
Twórcy
  • Agricultural Science Doctoral Program, Faculty of Agriculture, University of Lampung, Indonesia 35145
  • Department of Agronomy and Horticulture, Faculty of Agriculture, University of Lampung, Indonesia 35145
  • Department of Agronomy and Horticulture, Faculty of Agriculture, University of Lampung, Indonesia 35145
autor
  • Department of Agricultural Engineering, Faculty of Agriculture, University of Lampung, Indonesia 35145
Bibliografia
  • [1] Food and Agriculture Organization (FAO)., Natural Rubber: Top 10 Producers 2019, (2019).
  • [2] H.L. Ko, P.R. Campbell, M.P. Jobin-Décor, K.L. Eccleston, M.W. Graham, M.K. Smith, The introduction of transgenes to control blackheart in pineapple (Ananas Comosus L.) cv. Smooth Cayenne by microprojectile bombardment, Euphytica. 150 (2006) 387–395. https://doi.org/10.1007/s10681-006-9124-5.
  • [3] A.A. Thalip, P.S. Tong, C. Ng, The MD2 “Super Sweet” pineapple (Ananas comosus), UTAR Agric. Sci. J. 1 (2015) 14–17. http://eprints.utar.edu.my/1982/1/The_MD2_(Super_Sweet)_pineapple_(Ananas_comosus).pdf.
  • [4] D.E. Uriza-Ávila, A. Torres-Ávila, J. Aguilar-Ávila, V.H. Santoyo-Cortes, R. Zetina Lezama, A. Rebolledo-Martínez, La piña mexicana frente al reto de la innovación. Avances y retos en la gestión de la innovación, Chapingo, Estado de México, UACH, 2018.
  • [5] C. Souleymane, Y. Sopie Edwige-Salomé, N. Achi Laurent, K. Oi Kouadio Samuel, K. Tanoh Hilaire, Effects of Potassium Fertilization for Pineapple on Internal Browning of Fruit in Post-Harvest Conservation, J. Agric. Crop. (2019) 100–108. https://doi.org/10.32861/jac.56.100.108.
  • [6] K. Luengwilai, D.M. Beckles, J. Siriphanich, Postharvest internal browning of pineapple fruit originates at the phloem, J. Plant Physiol. 202 (2016) 121–133. https://doi.org/10.1016/j.jplph.2016.07.011.
  • [7] C. Queiroz, M.L. Mendes Lopes, E. Fialho, V.L. Valente-Mesquita, Polyphenol oxidase: Characteristics and mechanisms of browning control, Food Rev. Int. 24 (2008) 361–375. https://doi.org/10.1080/87559120802089332.
  • [8] R.E. Pauli, K.G. Rohrbach, Symptom Development of Chilling Injury in Pineapple Fruit, J. Am. Soc. Hortic. Sci. 110 (2022) 100–105. https://doi.org/10.21273/jashs.110.1.100.
  • [9] R.J. Stewart, B.J.B. Sawyer, S.P. Robinson, Blackheart development following chilling in fruit of susceptible and resistant pineapple cultivars, Aust. J. Exp. Agric. 42 (2002) 195–199. https://doi.org/10.1071/EA01094.
  • [10] J. Liu, C. He, F. Shen, K. Zhang, S. Zhu, The crown plays an important role in maintaining quality of harvested pineapple, Postharvest Biol. Technol. 124 (2017) 18–24. https://doi.org/10.1016/j.postharvbio.2016.09.007.
  • [11] Q. Zhang, Y. Liu, C. He, S. Zhu, Postharvest Exogenous Application of Abscisic Acid Reduces Internal Browning in Pineapple, J. Agric. Food Chem. 63 (2015) 5313–5320. https://doi.org/10.1021/jf506279x.
  • [12] Q. Zhang, X. Rao, L. Zhang, C. He, F. Yang, S. Zhu, Mechanism of internal browning of pineapple: The role of gibberellins catabolism gene (AcGA2ox) and GAs, Sci. Rep. 6 (2016) 33344. https://doi.org/10.1038/srep33344.
  • [13] K. Luengwilai, D.M. Beckles, U. Roessner, D.A. Dias, V. Lui, J. Siriphanich, Identification of physiological changes and key metabolites coincident with postharvest internal browning of pineapple (Ananas comosus L.) fruit, Postharvest Biol. Technol. 137 (2018) 56–65. https://doi.org/10.1016/j.postharvbio.2017.11.013.
  • [14] D.S. Pitadeniya, A study of pineapple black heart disorder: Measures to reduce postharvest losses during transportation and storage, (2004) 5–8.
  • [15] H. Abdullah, R.M. Atan, The development of black heart disease in Mauritius pineapple (Ananas comosus cv. Mauritius) during storage at lower temperatures, Mardi Res Bull. 11 (1983) 309–319.
  • [16] S.E. Widodo, Zulferiyenni, R. Arista, Coating effect of chitosan and plastic wrapping on the shelf life and qualities of guava cv Mutiara’ and ‘Crystal,’ J. Int. Soc. Southeast Asian Agric. Sci. 19 (12013).
  • [17] M.N. Ali, N. ‘Amira Hamid, The Effect of Chitosan Coating on Post-harvest Quality of Banana in Cold Storage, ESTEEM Acad. J. 17 (2021) 85–92. https://uppp.uitm.edu.my/images/doc/ESTEEM_pdf_format/vol17mac/10700_march21.pdf.
  • [18] M.J. Changsiriporn, Juntima, Jitprakong, Effects of Chitosan Coating on Postharvest Quality and Shelf Life of Banana Fruit, in: TIChE Int. Conf. 2011, Songkhla Thailand, 2011: pp. 355–358.
  • [19] M. Vargas, A. Albors, A. Chiralt, C. González-Martínez, Quality of cold-stored strawberries as affected by chitosan-oleic acid edible coatings, Postharvest Biol. Technol. 41 (2006) 164–171. https://doi.org/10.1016/j.postharvbio.2006.03.016.
  • [20] N. Maftoonazad, H.S. Ramaswamy, Postharvest shelf-life extension of avocados using methyl cellulose-based coating, Lwt. 38 (2005) 617–624. https://doi.org/10.1016/j.lwt.2004.08.007.
  • [21] R. Mehrotra, P. Bhalothia, P. Bansal, M.K. Basantani, V. Bharti, S. Mehrotra, Abscisic acid and abiotic stress tolerance - Different tiers of regulation, J. Plant Physiol. 171 (2014) 486–496. https://doi.org/10.1016/j.jplph.2013.12.007.
  • [22] G. Paliyath, J. Subramanian, Phospholipase D inhibition technology for enhancing shelf life and quality, Postharvest Biol. Technol. Fruits, Veg. Flowerx. 1 (2008) 195–239. https://patents.google.com/patent/WO2017193221A1/en/en27.
  • [23] R. Batth, K. Singh, S. Kumari, A. Mustafiz, Transcript profiling reveals the presence of abiotic stress and developmental stage specific ascorbate oxidase genes in plants, Front. Plant Sci. 8 (2017). https://doi.org/10.3389/fpls.2017.00198.
  • [24] Y. Li, Z. Chu, J. Luo, Y. Zhou, Y. Cai, Y. Lu, J. Xia, H. Kuang, Z. Ye, B. Ouyang, The C2H2 zinc-finger protein SlZF3 regulates AsA synthesis and salt tolerance by interacting with CSN5B, Plant Biotechnol. J. 16 (2018) 1201–1213. https://doi.org/10.1111/pbi.12863.
  • [25] K. Min, K. Chen, R. Arora, A metabolomics study of ascorbic acid-induced in situ freezing tolerance in spinach (Spinacia oleracea L.), Plant Direct. 4 (2020). https://doi.org/10.1002/pld3.202.
  • [26] H. Nimitkeatkai, V. Srilaong, S. Kanlayanarat, Effect of semi-active modified atmosphere on internal browning of cold stored pineapple, Acta Hortic. 712 II (2006) 649–653. https://doi.org/10.17660/actahortic.2006.712.80.
  • [27] P. Boonyaritthongchai, S. Supapvanich, Effects of methyl jasmonate on physicochemical qualities and internal browning of ‘queen’ pineapple fruit during cold storage, Hortic. Environ. Biotechnol. 58 (2017) 479–487. https://doi.org/10.1007/s13580-017-0362-3.
  • [28] X. Lu, D. Sun, Y. Li, W. Shi, G. Sun, Pre- and post-harvest salicylic acid treatments alleviate internal browning and maintain quality of winter pineapple fruit, Sci. Hortic. (Amsterdam). 130 (2011) 97–101. https://doi.org/10.1016/j.scienta.2011.06.017.
  • [29] United States Department of Agriculture, The United States standars for grades of pineapples: Classification of defects, (2008) 1–8.
  • [30] AOAC, Official Methods of Analysis of AOAC International, Off. Methods Anal. AOAC Int. 78 (2019) 585–892. https://doi.org/10.1093/9780197610138.001.0001.
  • [31] O. Arun Nukuntornprakit, K. Luengwilai, J. Siriphanich, Chilling injury in pineapple fruit is related to mitochondrial antioxidative metabolism, Postharvest Biol. Technol. 170 (2020) 111330. https://doi.org/10.1016/j.postharvbio.2020.111330.
  • [32] L.E. Ayón-Reyna, L.G. Ayón-Reyna, M.E. López-López, G. López-Angulo, K.V. Pineda-Hidalgo, J.A. Zazueta-Niebla, M.O. Vega-García, Changes in ascorbic acid and total phenolics contents associated with browning inhibition of pineapple slices, Food Sci. Technol. 39 (2019) 531–537. https://doi.org/10.1590/fst.21117.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c654f5b6-2dcd-4201-9f89-6f22dd91eb9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.