Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Geometry of the fluid container plays a key role in the shape of acoustic streaming patterns. Inadvertent vortices can be troublesome in some cases, but if treated properly, the problem turns into a very useful parameter in acoustic tweezing or micromixing applications. In this paper, the effects of sinusoidal boundaries of a microchannel on acoustic streaming patterns are studied. The results show that while top and bottom sinusoidal walls are vertically actuated at the resonance frequency of basic hypothetical rectangular microchannel, some repetitive acoustic streaming patterns are recognised in classifiable cases. Such patterns can never be produced in the rectangular geometry with flat boundaries. Relations between geometrical parameters and emerging acoustic streaming patterns lead us to propose formulas in order to predict more cases. Such results and formulations were not trivial at a glance.
Wydawca
Czasopismo
Rocznik
Tom
Strony
35--48
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
- Department of Physics, K.N. Toosi University of Technology, Tehran 15875-4416, Iran
autor
- Department of Physics, K.N. Toosi University of Technology, Tehran 15875-4416, Iran
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
Bibliografia
- 1. Ahmed D., Mao X., Juluri B. K., Huang T. J. (2009), A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles, Microfluidics and Nanofluidics, 7 (5): 727, doi:10.1007/s10404-009-0444-3.
- 2. Antfolk M., Muller P. B., Augustsson P., Bruus H., Laurell T. (2014), Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis, Lab on a Chip, 14 (15): 2791-2799, doi: 10.1039/C4LC00202D.
- 3. Barnkob R., Augustsson P., Laurell T., Bruus H. (2012), Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane, Physical Review E, 86 (5): 56307, doi: 10.1103/PhysRevE.86.056307.
- 4. Bernassau A. L., Courtney C. R. P., Beeley J., Drinkwater B. W., Cumming D. R. S. (2013), Interactive manipulation of microparticles in an octagonal sonotweezer, Applied Physics Letters, 102 (16): 164101, doi: 10.1063/1.4802754.
- 5. Czyż H. (1987a), Kinetics of the transport of aerosol particles under the influence of drift forces in the standing wave field, Archives of Acoustics, 12 (3-4): 215-224.
- 6. Czyż H. (1987b), The aerosol particle drift in a standing wave field, Archives of Acoustics, 12 (3-4): 199-214.
- 7. Doinikov A. A. (1997), Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. I. General formula, The Journal of the Acoustical Society of America, 101 (2): 713-721, doi: 10.1121/1.418035.
- 8. Evander M., Nilsson J. (2012), Acoustofluidics 20: applications in acoustic trapping, Lab on a Chip, 12 (22):4667-4676, doi: 10.1039/c2lc40999b.
- 9. Feng L., Song B., Zhang D., Jiang Y., Arai F. (2018), On-chip tunable cell rotation using acoustically oscillating asymmetrical microstructures, Micromachines, 9 (11): 596, doi: 10.3390/mi9110596.
- 10. Gor’kov L. P. (1962), On the forces acting on a small particle in an acoustical field in an ideal fluid, In Soviet Physics Doklady, Vol. 6, pp. 773-775.
- 11. Hamilton M. F., Ilinskii Y. A., Zabolotskaya E. A. (2003), Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width, The Journal of the Acoustical Society of America, 113 (1): 153-160, doi: 10.1121/1.1528928.
- 12. Huang P.-H. et al. (2014), A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures, Lab on a Chip, 14 (22): 4319-4323, doi: 10.1039/C4LC00806E.
- 13. Huang P.-H. et al. (2013), An acoustofluidic micromixer based on oscillating sidewall sharp-edges, Lab on a Chip, 13 (19): 3847-3852, doi: 10.1039/C3LC50568E.
- 14. King L. V. (1934), On the acoustic radiation pressure on spheres, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 147 (861): 212-240, doi: 10.1098/rspa.1934.0215.
- 15. Landau L. D., Lifshitz E. M. (1967), Course of Theoretical Physics, Vol. 6: Fluid Mechanics, Pergamon.
- 16. Lei J., Hill M., de León Albarrán C. P., Glynne-Jones P. (2018). Effects of micron scale surface profiles on acoustic streaming, Microfluidics and Nanofluidics, 22 (12), article number: 140, doi: 10.1007/s10404-018-2161-2.
- 17. Lewandowski J. (1992), Ultrasonic waves in some biological suspensions and emulsions. Archives of Acoustics, 17 (1): 89-102.
- 18. Muller P. B., Barnkob R., Jensen M. J. H., Bruus H. (2012), A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces, Lab on a Chip, 12 (22): 4617-4627, doi: 10.1039/C2LC40612H.
- 19. Muller P. B., Bruus H. (2014), Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels, Physical Review E, 90 (4): 43016, doi: 10.1103/PhysRevE.90.043016.
- 20. Muller P. B., Bruus H. (2015), Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels, Physical Review E, 92 (6): 63018, doi: 10.1103/PhysRevE.92.063018.
- 21. Muller P. B. et al. (2013), Ultrasound-induced acoustophoretic motion of microparticles in three dimensions, Physical Review E, 88 (2): 23006, doi: 10.1103/PhysRevE.88.023006.
- 22. Nama N., Huang P.-H., Huang T. J., Costanzo F. (2014), Investigation of acoustic streaming patterns around oscillating sharp edges, Lab on a Chip, 14 (15): 2824-2836, doi: 10.1039/c4lc00191e.
- 23. Nyborg W. L. (1953), Acoustic streaming due to attenuated plane waves, The Journal of the Acoustical Society of America, 25 (1): 68-75, doi: 10.1121/1.1907010.
- 24. Nyborg W. L. (1958). Acoustic streaming near a boundary, The Journal of the Acoustical Society of America, 30 (4): 329-339, doi: 10.1121/1.1909587.
- 25. Rayleigh, Lord (1884), On the circulation of air observed in Kundt’s tubes, and on some allied acoustical problems, Philosophical Transactions of the Royal Society of London, 175: 1-21, https://www.jstor.org/stable/109434.
- 26. Rednikov A. Y., Sadhal S. S. (2011), Acoustic/steady streaming from a motionless boundary and related phenomena: generalized treatment of the inner streaming and examples, Journal of Fluid Mechanics, 667: 426-462, doi: 10.1017/S0022112010004532.
- 27. Schlichting H., Gersten K. (2017), Boundary-layer theory, 9th. ed., Springer-Verlag, Berlin-Heidelberg, doi: 10.1007/978-3-662-52919-5.
- 28. Settnes M., Bruus H. (2012), Forces acting on a small particle in an acoustical field in a viscous fluid, Physical Review E, 85 (1): 16327, doi: 10.1103/Phys-RevE.85.016327.
- 29. Spengler J. F., Coakley W. T., Christensen K. T. (2003), Microstreaming effects on particle concentration in an ultrasonic standing wave, AIChE Journal, 49 (11): 2773-2782, doi: 10.1002/aic.690491110.
- 30. Westervelt P. J. (1953), The theory of steady rotational flow generated by a sound field, The Journal of the Acoustical Society of America, 25 (1): 60-67, doi: 10.1121/1.1907009.
- 31. Wiklund M., Green R., Ohlin M. (2012), Acousto-fluidics 14: Applications of acoustic streaming in microfluidic devices, Lab on a Chip, 12 (14): 2438-2451, doi: 10.1039/C2LC40203C.
- 32. Włoch, A., Czyż H., Jasinski T. (2019), Separation of cells from plasma by means of ultrasonics. Archives of Acoustics, 44 (2): 357-363, doi: 10.24425/aoa.2019.128499.
- 33. Yazdi S., Ardekani A. M. (2012), Bacterial aggregation and biofilm formation in a vortical flow, Biomicrofluidics, 6 (4): 44114, 10.1063/1.4771407.
- 34. Yosioka K., Kawasima Y. (1955), Acoustic radiation pressure on a compressible sphere, Acta Acustica united with Acustica, 5 (3): 167-173.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c652333c-cd19-4bf6-9979-dee91e820868