PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Dissolution kinetics of hemimorphite in methane sulfonic acid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hemimorphite has a large content of zinc, but its recovery using flotation alone is low. Nowadays, hydrometallurgical and pyrometallurgical methods are used to treat zinc ores. In this work, the leaching and dissolution kinetics of hemimorphite by using methane sulfonic acid (MSA) as an alternative leaching reagent was investigated. The effects of several experimental parameters including reaction temperature, MSA concentration, particle size, and stirring speed were also analyzed. Results showed that zinc leaching increased with increased reaction temperature, MSA concentration, and stirring speed, as well as decreased particle size. The mechanism of hemimorphite dissolution in MSA solutions may be a new variant of the shrinking-core model. Based on experimental data and kinetics, the apparent activation energy was determined to be 49.50 kJ/mol. The rate of reaction equation was also obtained to describe the process and found that the MSA concentration largely influenced the leaching of hemimorphite.
Słowa kluczowe
Rocznik
Strony
1--9
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Mineral Processing Engineering, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Mineral Processing Engineering, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Mineral Processing Engineering, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Mineral Processing Engineering, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Mineral Processing Engineering, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
Bibliografia
  • LIU Z.Y., LIU Z.H., LI Q.H., YANG T.Z., ZHANG X., 2012. Leaching of hemimorphite in NH3-(NH4)2SO4-H2O system and its mechanism, Hydrometallurgy, 125, 137-143.
  • FENG Q.C., WEN S.M., ZHAO W.J., BAI X., CHEN Y., 2015. Dissolution regularities of smithsonite in methane sulfonic acid, Russ. J. Nonferr. Met. 56(4), 365–371.
  • CHEN A.L., LI M.C., QIAN Z., MA Y.T., CHE J.Y., MA Y.L., 2016. Hemimorphite ores:a review of processing technologies for zinc extraction, JOM. 68(10), 2688-2697.
  • FENG Q.C., WEN S.M., 2017. Formation of zinc sulfide species on smithsonite surfaces and its response to flotation performance, J. Alloy. Compd. 709, 602–608.
  • LI C.X., WEI C., DENG Z.G., LI X.B., FAN G., XU H.S., 2013. Kinetics of hydrothermal sulfidation of synthetic hemimorphite with elemental sulfur, T. Nonferr. Metal. Soc. China. 23, 1815-1821.
  • FENG Q.C., WEN S.M., DENG J.S., ZHAO W.J., 2017. Combined DFT and XPS investigation of enhanced adsorption of sulfide species onto cerussite by surface modification with chloride, Appl. Surf. Sci. 425, 8–15.
  • FENG Q.C., ZHAO W.J., WEN S.M., 2018. Surface modification of malachite with ethanediamine and its effect on sulfidization flotation, Appl. Surf. Sci. 436, 823–831.
  • YIN Z.L., DING Z.Y., HU H.P., LIU K., CHEN Q.Y., 2010. Dissolution of zinc silicate (hemimorphite) with ammonia-ammonium chloride solution, Hydrometallurgy, 103, 215-220.
  • WU D.D., WEN S.M., YANG J., DENG J.S., 2015. Investigation of dissolution kinetics of zinc from smithsonite in 5-sulphosalicylic acid solution, Can. Metall. Quart. 51(1), 51-57.
  • VIDA S., GILNAZ A., FERESHTEH R., NAVID M., 2009. A shrinking particle-shrinking core model for leaching of a zinc ore containing silica, Int. J. Miner. Process. 93, 79-83.
  • YANG S.H., LI H., SUN Y.W., CHEN Y.M., TANG C.B., HE J., 2016. Leaching kinetics of zinc silicate in ammonium chloride solution, T. Nonferr. Metal. Soc. 26, 1688-1695.
  • LIU C., FENG Q.M., ZHANG G.F., MA W.K., MENG Q.Y., CHEN Y.F., 2016. Effects of lead ions on the flotation of hemimorphite using sodium oleate, Miner. Eng. 89, 163-167.
  • FENG Q.C., ZHAO W.J., WEN S.M., CAO Q.B., 2017. Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector, Sep. Purif. Technol. 178, 193-199.
  • DING Z.Y., YIN Z.Y., HU H.P., CHEN Q.Y., 2010. Dissolution kinetics of zinc silicate(hemimorphite) in ammoniacal solution, Hydrometallurgy, 104, 201-205.
  • CHEN A.L., ZHAO Z.W., JIA X.J., LONG S., HUO G.S., CHEN X.Y., 2009. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore, Hydrometallurgy, 97, 228-232.
  • YUAN T.C., CAO Q.Y., LI J., 2010. Effects of mechanical activation on physicochemical properties and alkaline leaching of hemimorphite. Hydrometallurgy, 104, 136-141.
  • MAHDI G., MEHDI I., AMIR R.A., 2013. Separation of nickel and zinc ions in a synthetic acidic solution by solvent extraction using D2EHPA and Cyanex 272, Physicochem. Probl. Miner. Process. 49(1): 233-242.
  • ZHAO Y.C., ROBERT S., 2000. Production of Zn powder by alkaline treatment of smithsonite Zn-Pb ores, Hydrometallurgy 56, 237-249.
  • XU H.S., WEI C., LI C.X., FAN G. DENG Z.G., ZHOU X.J., QIU S., 2012. Leaching of a complex sulfidic, silicate-containing zinc ore in sulfuric acid solution under oxygen pressure, Sep. Purif. Technol. 85, 206-212.
  • TERRY B., MONHEMIUS A.J., 1983. Acid dissoultion of willemite and hemimorphite, Metall. Trans. 14, 335-346.
  • XU H.S., WEI C., LI C.X., DENG Z.G., LI M.T., 2014. Kinetic study and mathematical model of hemimorphite dissolution in low sulfuric acid solution at hing temperature, Metall. Mater. Trans. A. 45, 1622-1633.
  • RAO S., ZHANG D.C., YANG T.Z., LIU W.F., CHEN l., LING H.B., ZHANG X.W., 2017. Selective extraction of zinc from refractory hemimorphite using iminodiacetic acid as a complexing agent, JOM. 69(10), 1909-1913.
  • YUAN T.C., CAO Q.Y., LI J., 2010. Effects of mechanical activation on physicochemical properties and alkaline leaching of hemimorphite, Hydrometallurgy, 104, 136-141.
  • ZHAO D.Q., YANG S.H., CHEN Y.M., TANG C.B., HE J., LI H., 2017. Leaching kinetics of hemimorphite in ammonium chloride solution, Metals. (7), 237-247.
  • FENG Q.C., WEN S.M., WANG Y.J., CAO Q.B., ZHAO W.J., 2015. Dissolution kinetics of cerussite in an alternative leaching reagent for lead, Chem. Pap. 69(3), 440–447.
  • WU Z.H., DAVID B.D., HENNING U., STEFAN F., 2014. Fundamental study of lead recovery from cerussite concentrate with methanesulfonic acid (MSA), Hydrometallurgy, 14, 23–35.
  • AHMET E., EVRIM A., ASIM K., NIZAMETTIN D., 2012. Investigation of leaching kinetics of copper from malachite ore in ammonium nitrate solutions, Metall. Mater. Trans. A. 43, 764–772.
  • FENG Q.C., WEN S.M., WANG Y.J., ZHAO W.J., DENG J.S., 2015. Investigation of leaching kinetics of cerussite in sodium hydroxide solutions, Physicochem. Probl. Miner. Process. 51(2), 491–500.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c64d89a0-1e78-4395-825e-0dd1a1af4098
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.