Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The constrained averaged controllability of linear one-dimensional heat equation defined on R and R+ is studied. The control is carried out by means of the time-dependent intensity of a heat source located at an uncertain interval of the corresponding domain, the end-points of which are considered as uniformly distributed random variables. Employing the Green’s function approach, it is shown that the heat equation is not constrained averaged controllable neither in R nor in R+. Sufficient conditions on initial and terminal data for the averaged exact and approximate controllabilities are obtained. However, constrained averaged controllability of the heat equation is established in the case of point heat source, the location of which is considered as a uniformly distributed random variable. Moreover, it is obtained that the lack of averaged controllability occurs for random variables with arbitrary symmetric density function.
Czasopismo
Rocznik
Tom
Strony
573--584
Opis fizyczny
Bibliogr. 19 poz., wzory
Twórcy
autor
- Institute of Control Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
autor
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai,China
- andDepartment onDynamics ofDeformable Systems and Coupled Fields, Institute of Mechanics, National Academy of Sciences of Armenia
Bibliografia
- [1] S. Micu and E. Zuazua: On the lack of null controllability of the heat equation on the half line. Transactions of the American Mathematical Society, 353 (2001), 1635-1659.
- [2] S. Micu and E. Zuazua: Null Controllability of the Heat Equation in Unbounded Domains. In: “Unsolved Problems in Mathematical Systems and Control Theory” ed. Blondel, V. D. and Megretski A. Princeton University Press, Princeton, 2004.
- [3] S. Micu and E. Zuazua: On the lack of null controllability of the heat equation on the half space. Portugaliae Mathematica, 58 (2001), 1-24.
- [4] As. Zh. Khurshudyan: Distributed controllability of heat equation in unbounded domains: The Green’s function approach. Archives of Control Sciences, 29(1), (2019), 1-15.
- [5] A. S. Avetisyan and As. Zh. Khurshudyan: Controllability of Dynamic Systems: The Green’s Function Approach. Cambridge Scholars Publishing, Cambridge, 2018.
- [6] E. Zuazua: Averaged control. Automatica, 50(12), (2014), 3077-3087.
- [7] M. Lazar and E. Zuazua: Averaged control and observation of parameter depending wave equations. C. R. Math. Acad. Sci. Paris, 352(6), (2014), 497-502.
- [8] Q. Lu and E. Zuazua: Averaged controllability for random evolution Partial Differential Equations. Journal de Mathematiques Pures et Appliquees, 1015(3), (2016), 367-414.
- [9] Q. Lu and E. Zuazua: Averaged controllability for parameter-dependent evolution partial differential equations. Open Problems in Systems and Control, IMA-Minneapolis, 1-4, 2017.
- [10] J. Loheac and E. Zuazua: Averaged controllability of parameter dependent conservative semigroups. Journal of Differential Equations, 262(3), (2017), 1540–1574.
- [11] A. Hafdallah and A. Ayadi: Optimal control of electromagnetic wave displacement with an unknown velocity of propagation. International Journal of Control, 2018, DOI: 10.1080/00207179.2018.1458157.
- [12] Mophou, G., et al., Optimal control of averaged state of a parabolic equation with missing boundary condition. International Journal of Control, 2018, DOI: 10.1080/00207179.2018.1556810.
- [13] J. Klamka: Constrained controllability of nonlinear systems. Journal of Mathematical Analysis and Applications, 201(2), (1996), 365-374.
- [14] J. Klamka: Constrained approximate controllability. IEEE Transactions on Automatic Control, 45(9), (2000), 1745-1749.
- [15] J. Klamka: Constrained controllability of semilinear systems. Nonlinear Analysis, 47(6), (2001), 2939-2949.
- [16] J. Klamka: Controllability and Minimum Energy Control. Springer, Cham, 2019.
- [17] As. Zh. Khurshudyan: Heuristic determination of resolving controls for exact and approximate controllability of nonlinear dynamic systems. Mathematical Problems in Engineering, article ID 9496371, 16 pages (2018).
- [18] A. G. Butkovskii and L. M. Pustyl’nikov: Characteristics of Distributed-Parameter Systems. Kluwer Academic Publishers, New York, 1993.
- [19] As. Zh. Khurshudyan: Exact and approximate controllability conditions for the micro-swimmers deflection governed by electric field on a plane: The Green’s function approach. Archives of Control Sciences, 28(3), (2018), 335-347.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c64748b9-4dca-4890-9ada-3a9302f14ff7