PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Różnicowa kalorymetria skaningowa DSC, ciśnieniowa różnicowa kalorymetria skaningowa PDSC, StepScan DSC, temperaturowo modulowana DSC szybka i super szybka DSC w badaniu żywności

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Differential scanning calorimetry DSC, pressure differential scanning calorimetry PDSC, StepScan DSC, temperature modulated DSC, Fast DSC and Hyper DSC in food research
Języki publikacji
PL
Abstrakty
PL
Różnicowa kalorymetria skaningowa (DSC) opracowana na początku lat 60. ubiegłego stulecia i wdrożona do badań naukowych i technologicznych jest jedną z najczęściej stosowanych metod termoanalitycznych. Wkrótce potem opracowano i w 1970 roku wdrożono wersję wysokociśnieniową (PDSC) tej metody. Metody DSC i PDSC znalazły zastosowanie głównie w badaniu polimerów i tworzyw sztucznych oraz farmaceutyków, ale także w badaniu związków biologicznych oraz żywności (białek, węglowodanów, tłuszczów oraz wody w żywności) i innych składników. Ze względu na złożoność i różnorodność żywności i wynikające stąd trudności w prowadzeniu badań i interpretacji ich wyników opracowano i wdrożono nowe metody badawcze, w których uwzględniono stopniowe i modulowane zmiany temperatur (StepScan i TM) oraz szybkość tych zmian (szybka DSC 100-300°C/min i superszybka Hyper DSC 300-750°C/min). W pracy przedstawiono zasady fizyczne metody i działania aparatów DSC. Podano i omówiono literaturowe przykłady badań żywności z zastosowaniem tych metod.
EN
Differential scanning calorimetry (DSC) currently the most popular thermoanalytical method has been elaborated and implemented at the beginning of 1960`ties. Shortly after that in 1970 the high pressure version of the instrument (PDSC) was constructed and implemented. The DSC and PDSC methods have found wide applications mainly in research of polymers, plastics and pharmaceuticals and also in research of biological compounds and foods (proteins, carbohydrates, fats and water in food). Taking into account that food forms extremely complicated and heterogeneous systems that involved difficulties in performing the studies and in interpretations of results the new research methods have been elaborated and implemented. In those methods the step (ramp-iso-ramp – StepScan DSC) or sinusoidal (increase-decrease-increase – TMDSC) programming of temperature was used. In Fast DSC and Hyper DSC the temperature increase/decrease are in the range of 100-300°C/min and 300-750°C/min, respectively. In this paper the physical principles of the method and the DSC apparatuses are presented. The examples of papers reported the results of food research with the use thermoanalytical methods are presented and discussed.
Słowa kluczowe
Rocznik
Strony
128--138
Opis fizyczny
Bibliogr. 70 poz., rys., tab., wykr.
Twórcy
autor
  • SGGW, Wydział Nauk o Żywności, Katedra Chemii, Warszawa, Polska
Bibliografia
  • 1. Abdulkarim S. M., Ghazali H. M., Comparison of melting behaviours of edible oils using conventional and HyperDifferential Scanning Calorimetric Scan Rates. ASEAN Food Journal 14 (1), (2007), 25-35.
  • 2. Baichoo N., MacNaughtan W., Mitchel J. R., Farhat I. A., A STEPSCAN Differential Scanning Calorimetry study of the thermal behavior of chocolate. Food Biophysics 1 (4), (2006), 169-177.
  • 3. Barbosa-Canovas G. V., Juliano P., Peleg M., 2004/Rev. Engineering Properties ofFoods, in Encyclopedia of Life Support Systems (EOLSS), (2006), 1-32. Developed under the Auspices of the UNESCO, EOLSS Publishers, Oxford, UK. http://www.eolss.net.
  • 4. Biliaderis C. G., Differential scanning calorimetry in food research a review. Food Chem. 10, (1983), 239-265.
  • 5. Chiavaro E., Differential Scanning Calorimetry. Applications in fats and oil technology. CRC Press, Taylor and Francis Groups, Boca Raton, FL, USA, (2014), 1-301.
  • 6. Edwards C. H., Warren F. J., Campbell G. M., Gaisford S., Royall P. G., Butterworth P. J., Ellis P. R., A study of starch gelatinisation behaviour in hydrothermally-processed plant food tissues and implications for in vitro digestibility. Food and Function 6, (2015), 3634-3641.
  • 7. Farkas J., Mohacsi-Farkas C., Application of differential scanning calorimetry in food research and food quality assurance. J. Thermal Anal. 47, (1996), 1787-1803.
  • 8. Ford J. L., Mann T. E., Fast-scan DSC and its role in pharmaceutical physical form characterisation and selection. Adv. Drug Delivery Reviews 64, (2012), 422-430.
  • 9. Gabbott P., A Practical Introduction to Differential Scanning Calorimetry, Chapter 1, Principles and Applications of Thermal Analysis. Editor P. Gabbott, Blackwell Publishing, (2008), 1-50.
  • 10. Gabbott P., Fast Scanning DSC, Chapter 2, Principles and Applications of Thermal Analysis. Editor P. Gabbott, Blackwell Publishing, (2008), 51-86.
  • 11. Gaisford S., Buanz A. B. M., Pharmaceutical physical form characterisation with fast (>200°C/min–1) DSC heating rates. J. Thermal. Anal. Calorim. 106 (1), (2011), 221-226.
  • 12. Garden J.-L., Bourgeois O., Nanocalorimetry. Springer. Encyclopedia of nanotechnology. Bhushan Bharat (Ed), (2012), 1491-1504.
  • 13. Gmelin E., Sarge St. M., Calibration of differential scanning calorimeters. Pure and Appl. Chem. 11, (1995), 1789-1800.
  • 14. Gmelin E., Classical temperature-modulated calorimetry: A review. Thermochim. Acata 304/305, (1997), 1-26.
  • 15. Gill P., Moghadam T. T., Ranjbar B., Differential Scanning Calorimetry Techniques: Applications in Biology and Nanoscience. J. Biomolecular Techniques 21, (2010), 167-193.
  • 16. Gill P. S., Sauerbrunn S. R., Reading M., Modulated differential scanning calorimetry. J. Therm. Anal. Calorim. 40, (1993), 931-939.
  • 17. Gramaglia D., Conway B. R., Kett V. L., Malcolm R. K., Batchelor H. K., High speed DSC (hyper-DSC) as a tool to measure the solubility of a drug within a solid or semi-solid matrix. Intern. J. Pharmaceutics 301 (1-2), (2005), 1-5.
  • 18. Hakvoort G., Hol C. M., DSC calibration during cooling. J. Thermal Anal. Calorim. 56, (1999), 717-722.
  • 19. Hakvoort G., Hol C. M., Van Ekerten P. J., DSC calibration during cooling. A survey of possible compounds. J. Therm. Anal. Calorim. 64 (1), (2001), 367-375.
  • 20. Hemminger W., Wilburn F. W., Gravelle P. C., Haglund B. O., Haines P. J., Hakvoort G., Ohlyba M., Simon J., Sarge S. M., ICTAC Nomenclature Committee Report: Recommendation for Names and Definition in Thermal Analysis and Calorimetry, ICTAC News 31/2, (1998), 107-122.
  • 21. Hőhne G. W. H., Hemminger W. F., Flammershein H.-J., Differential scanning calorimetry. Springer-Verlag, (2003).
  • 22. Hőhne G. W. H., Kaletunç G., High-Pressure Differential Scanning Calorimetry, Chapter 3, w: Calorimetry in Food Processing: Analysis and Design of Food Systems, Editor G. Kaletunç, Wiley-Blackwell, (2009), 51-66.
  • 23. Johnson C. M., Differential scanning calorimetry as a tool for protein folding and stability. Archives Biochemistry and Biophysics 531, (2013), 100-109.
  • 24. Kaletunç G., Calorimetry in Food Processing: Analysis and Design of Food Systems.
  • Editor G. Kaletunç, Wiley-Blackwell and IFT Press, (2009).
  • 25. Kardas M., Grochowska-Niedworok E., Różnicowa kalorymetria skaningowa jako metoda termoanalityczna stosowana w farmacji i analizie żywności. Bromat. Chem. Toksykol., 42 (2), (2009), 224-230.
  • 26. Kodre K. V., Attarde S. R., Yendhe P. R., Patil R. Y., Barge V. U., Differential Scanning Calorimetry: A Review. Research and Reviews: J. Pharmaceutical Analysis (RRJPA) 3 (3), (2014), 11-22.
  • 27. Kowalski B., Determination of specific heats of some edible oils and fats by differential scanning calorimetry. J. Therm. Anal. 34, (1988), 1321-1326.
  • 28. Kowalski B., Determination of oxidative stability of edible vegetable oils by pressure differential scanning calorimetry. Thermochim. Acta 156, (1989), 347-358.
  • 29. Kowalski B., Analiza termiczna i jej zastosowanie w badaniu żywności. Część I. Metody, aparatura, badanie białek i węglowodanów, oznaczanie wody. Przem. Spoż. 2-3, (1990), 41-44.
  • 30. Kowalski B., Analiza termiczna i jej zastosowanie w badaniu żywności. Część II. Termoanalityczne badania lipidów, Przem. Spoż. 11, (1990), 263-267.
  • 31. Lappalainen M., Melting behaviour and quantification of low amorphous levels in sugars and sugar alcohols with DSC techniques. Doctoral dissertation, (2010), 1-49.
  • 32. Lappalainen M., Karpinnen M., Techniques of differential scanning calorimetry for quantification of low contents of amorphous phases. J. Thermal. Anal. Calorim. 102 (1), (2010), 171-180.
  • 33. Lappalainen M., Pitkanen I., Harjunen P., Quantification of low levels of amorphous content in sucrose by hyper DSC. Intern. J. Pharmaceutics 307, (2006), 150-155.
  • 34. Lee J. W., Thomas L. C., Schmidt S. J., Can the Thermodynamic Melting Temperature of Sucrose, Glucose, and Fructose Be Measured Using Rapid-Scanning Differential Scanning Calorimetry (DSC)? J. Agricultural & Food Chem. 59, (2011), 3306-3310.
  • 35. Lever T., Haines P., Rouquerol J., Charsley E. L., Van Eckeren P., Burlett D. J., ICTAC nomenclature of thermal analysis (IUPAC Recommendations 2014).
  • 36. Levy P. F., Nieuweboer G., Semanski L. G., Pressure differential scanning calorimetry. Thermochim. Acta 1, (1970), 429-436.
  • 37. Litwinienko G., Analysis of Lipid Oxidation by Differential Scanning Calorimetry, w: Analysis of Lipid Oxidation, Kamal-Eldin A., Pokorny J., (Eds.) JAOCS Press, Champaign, IL, (2005), 152-193.
  • 38. Liu P., Yu L., Liu H., Chen L., Li L., Glass transition temperature of starch studied by a high-speed DSC. Carbohydrate Polymers 77, (2009), 250-253. 136
  • 39. Ma C. Y., Harwalkar V. P., Thermal analysis of food proteins. Adv. Food Nutr. Res. 35, (1991), 317-366.
  • 40. Mac Naughtan B., Farhat I. A., Thermal Methods in the Study of Foods and Food Ingredients. Chapter 9, w: Principles and Applications of Thermal Analysis. Editor P. Gabbott, Blackwell Publishing, (2008), 330-409.
  • 41. Munoz V., Cerminara M., When fast is better: protein: folding fundamentals and mechanisms from ultrafast approaches. Biochem. J. 473, (2016), 2545-2559.
  • 42. Parniakov O., Bals O., Barba F. J., Mykhaiłyk V., Lebovka N., Vorobiev E., 2016. Application of differential scanning calorimetry to estimate quality and nutritional properties of food products. Critical Review Food Science Nutrition. DOI:10.1080/10408398.2016.1180502; http://dx.doi.org/10.1080/10408398.2016.1180502.
  • 43. Picard S., Burns D. T., Roger P., Measurement of the specific heat capacity of synthetic sapphire (α-Al2O3) from 293 K to 301 K. Rapport BIMP-08/05. International Bureau of Weights and Measures. F-92312 Sevres Cedex France, (2008).
  • 44. Pielichowski K., Flejtuch K., Zastosowanie modulowanej różnicowej kalorymetrii skaningowej (MDSC) w badaniach właściwości polimerów. Polimery 47, (11-12), (2002), 784-792.
  • 45. Pijpers T. F. J., Mathot V. B. F., Goderis B., Scherrenberg R. L., Van Vegte E. W., High-Speed Calorimetry for the Study of the Kinetics of (De)vitrification, Crystallization, and Melting of Macromolecules. Macromolecul. 35, (2002), 3601-3613.
  • 46. Pishchur D. P., Drebushchak V. A., Recommendation on DSC calibration. J. Therm. Anal. Calorim. 124, (2016), 951-958.
  • 47. Price D. M., Temperature calibration of differential scanning calorimeters. J. Therm. Anal. Calorim. 45, (1995), 1285-1296.
  • 48. Pyda M., Temperature-Modulated Differential Scanning Calorimetry. Encyclopedia of Polymer Science and Technology, (2014), 1-31.
  • 49. Raemy A., Lambelet P., Thermal behaviour of foods. Thermochim. Acta 193, (1991), 417-439.
  • 50. Reading M., Luget A., Wilson R., Modulated differential scanning calorimetry. Thermochim. Acta 238, (1994), 295-307.
  • 51. Saldana M. D. A., Martinez-Monteagudo S. I., Oxidative stability of fats and oils measured by Differential Scanning Calorimetry for food and industrial applications, w: Applications of Calorimetry in a Wide Context–Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry edited by Amal Ali Elkordy, ISBN 978-953-51-0947-1 In Tech, January 1, (2013).
  • 52. Sarge S. M., Gmelin E., Höhne G. W. H., Cammenga H. K., Hemminger W., Eysel W., 1994. The caloric calibration of scanning calorimeters. Thermochim. Acta 247, 129-168.
  • 53. Sarge S. M., Höhne G. W. H., Cammenga H. K., Eysel W., Gmelin E., Temperature, heat and heat flow rate calibration of scanning calorimeters in the cooling mode. Thermochim. Acta 361, (2000), 1-20.
  • 54. Schawe J. E. K., Principles for the interpretation of temperature-modulated DSC measurements. Part 2. A thermodynamic approach. Thermochim. Acta 304-305, (1997), 111-119.
  • 55. Samyn P., Schoukens G., Vonck L., Stanssens D., Van den Abbeele H., Quality of Brazilian vegetable oils evaluated by (modulated) differential scanning calorimetry. J. Therm. Anal. Calorim., 110 (3), (2012), 1353-1365.
  • 56. Schiraldi A., Thermochim. Acta, 246 (2), (1994), 249-435.
  • 57. Splinter R., Van Herwaarden A. W., Iervolino E., Vanden Poel G., Istrate D., Sarro P. M., Analysing protein denaturation using Fast Differential Scanning Calorimetry. Procedia Engineering 47, (2012), 140-143.
  • 58. Tamilmani P., Pandey M. C., Thermal analysis of meat and meat products. J. Therm. Anal. Calorim. 123 (3), (2016), 1899-1917.
  • 59. Tan C. P., Man Y. B. C., Recent developments in differential scanning calorimetry for assessing oxidative deterioration of vegetable oils. Trends Food Sci. Technol. 13, (2002), 312-318.
  • 60. Thomas L. C., Modulated DSC Paper #1. Why Modulated DSC?; An Overview and Summary of Advantages and Disadvantages Relative to Traditional DSC. TA Instruments, TP 006, (2005), 1-8.
  • 61. Tunick M. H., Novak J. S., Bayles D. O., Lee J., Kaletunç G., Analysis of foodborne bacteria by Differential Scanning Calorimetry, Chapter 7, w: Calorimetry in Food Processing: Analysis and Design of Food Systems, Editor G. Kaletunç. Wiley-Blackwell and IFT Press, (2009), 147-167.
  • 62. Van Wetten I. A., Van Herwaarden A. W., Splinter R., Van Ruth S. M., Oil analysis by Fast DSC. Procedia Enginering 87, (2014), 280-283.
  • 63. Van Wetten I. A., Van Herwaarden A. W., Splinter R., Boerrigter-Eenling R., Van RuthS. M., Detection of sunflower oil in extra virgin olive oil by fast differential scanning calorimetry. Thermochim. Acta 603, (2014), 237-243.
  • 64. Venkata Krishnan R., Nagarajan K., Evaluation of heat capacity measurements by temperature-modulated differential scanning calorimetry. J. Therm. Anal. Calorim. 102 (3), (2010), 1135-1140.
  • 65. Verdonck E., Schaap K., Thomas L. C., A discussion of the principles and applications of Modulated Temperature DSC (MTDSC). Intern. J. Pharmaceutics 192, (1999), 3-20.
  • 66. Vilgis T. A., Soft matter food physics–the physics of food and cooking. Rep. Prog. Phys. 78, (2015), 1-82.
  • 67. Watson E. S., O'Neill M. J., Differential Microcalorimeter. U.S. Patent, Filled Apr. 4, 1962. Ser. No. 185, 499, (1962).
  • 68. Watson E. S., O'Neill M. J., Justin J., Brenner N., A differential scanning calorimeter for quantitative differential thermal analysis. Anal. Chem. 36 (7), (1964), 1233-1238.
  • 69. Zhuravlev E., Schick C., Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim. Acta 505, (2010), 1-13.
  • 70. Zhuravlev E., Schick C., Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim. Acta 505, (2010), 14-21.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6435770-f832-4af1-ac83-bf46ed01f563
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.