PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimized variational mode decomposition for improved bearing fault diagnosis and performance evaluation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research presents an enhanced methodology for diagnosing bearing faults using Variational Mode Decomposition (VMD) based on L-Kurtosis analysis. The proposed method focuses on selecting optimal parameters for VMD to extract the mode containing the most information related to the fault. The selection of these parameters is based on comparing the energy ratio of each mode and the absolute difference in L-Kurtosis between the Intrinsic Mode Function (IMF) with the highest energy and the original signal. The extracted mode is further refined using a specified kurtosis rate threshold to ensure the most relevant significant modes are captured. The proposed methodology was tested using real fault data from the CWRU, XJTUSY, and a realworld wind turbine dataset related to electric motors and wind turbine systems. The results demonstrated high accuracy in fault detection compared to other methods such as the Gini Index, correlation, and traditional decomposition techniques like EMD (Empirical Mode Decomposition). Furthermore, due to the simple computational nature of the improved VMD method, it is faster and more efficient compared to methods that rely on complex calculations or frequency band analysis, making it suitable for applications requiring real-time, reliable fault diagnosis.
Rocznik
Strony
467--495
Opis fizyczny
Bibliogr. 25 poz., fot., tab., wykr.
Twórcy
  • Electromechanical Systems Laboratory, Badji Mokhtar-Annaba University, Annaba, Algeria
  • Electromechanical Systems Laboratory, Badji Mokhtar-Annaba University, Annaba, Algeria
autor
  • Electromechanical Systems Laboratory, Badji Mokhtar-Annaba University, Annaba, Algeria
Bibliografia
  • [1] D. Meng, H. Wang, S. Yang, Z. Lv, Z. Hu, and Z. Wang. Fault analysis of wind power rolling bearing based on EMD feature extraction. Computer Modeling in Engineering & Sciences, 130(1):543–558. doi: 10.32604/cmes.2022.018123.
  • [2] M. Elgendi, M. AlMallahi, A. Abdelkhalig, and M.Y.E. Selim. A review of wind turbines in complex terrain. International Journal of Thermofluids, 17:100289, 2023. doi: 10.1016/j.ijft. 2023.100289.
  • [3] D. Meng, S. Yang, A.M.P. de Jesus, and S. Zhu. A novel Kriging-model-assisted reliability- based multidisciplinary design optimization strategy and its application in the offshore wind turbine tower. Renewable Energy, 203:407–420, 2023. doi: 10.1016/j.renene.2022.12.062.
  • [4] D. Meng, H. Yang, S. Yang, Y. Zhang, A.M.P. de Jesus, J. Correia, T. Fazeres-Ferradosa, W. Macek, R. Branco, and S. Zhu. Kriging-assisted hybrid reliability design and optimization of offshore wind turbine support structure based on a portfolio allocation strategy. Ocean Engineering, 295:116842, 2024. doi: 10.1016/j.oceaneng.2024.116842.
  • [5] P. Santos, L.F. Villa, A. Reñones, A. Bustillo, and J. Maudes. An SVM-based solution for fault detection in wind turbines. Sensors, 15(3):5627–5648, 2015. doi: 10.3390/s150305627.
  • [6] S. Yang, Z. He, J. Chai, D. Meng, W. Macek, R. Branco, and S. Zhu. A novel hybrid adaptive framework for support vector machine-based reliability analysis: A comparative study. Structures, 58:105665, 2023. doi: 10.1016/j.istruc.2023.105665.
  • [7] J. Vives, J. Palací, and J. Heart. SVM-algorithm for supervision, monitoring and detection vibration in wind turbines. Journal of Computer and Communications, 10(11):44–55, 2022. doi: 10.4236/jcc.2022.1011004.
  • [8] F. Zhang, W. Sun, H. Wang, and T. Xu. Fault diagnosis of a wind turbine gearbox based on improved variational mode algorithm and information entropy. Entropy, 23(7):794, 2021. doi:10.3390/e23070794.
  • [9] H. Peng, H. Zhang, Y. Fan, L. Shangguan, and Y. Yang. A review of research on wind turbine bearings’ failure analysis and fault diagnosis. Lubricants, 11(1):14, 2023. doi: 10.3390/lubricants11010014.
  • [10] H. Li, T. Liu, X. Wu, and Q. Chen. An optimized VMD method and its applications in bearing fault diagnosis. Measurement, 166:108185, 2020. doi: 10.1016/j.measurement.2020.108185.
  • [11] M.G.A. Nassef, T.M. Hussein, and O. Mokhiamar. An adaptive variational mode decomposition based on sailfish optimization algorithm and Gini index for fault identification in rolling bearings, Measurement, 173:108514, 2021. doi: 10.1016/j.measurement.2020.108514.
  • [12] B. Xu, F. Zhou, H. Li, B. Yan, and Y. Liu. Early fault feature extraction of bearings based on Teager energy operator and optimal VMD. ISA Transactions, 86:249–265, 2019. doi: 10.1016/j.isatra.2018.11.010.
  • [13] A. Dibaj, R. Hassannejad, M.M. Ettefagh, and M.B. Ehghaghi. Incipient fault diagnosis of bearings based on parameter-optimized VMD and envelope spectrum weighted kurtosis index with a new sensitivity assessment threshold. ISA Transactions, 114:413–433, 2021. doi: 10.1016/j.isatra.2020.12.041.
  • [14] H. Li, T. Liu, X. Wu, and Q. Chen. Application of optimized variational mode decomposition based on kurtosis and resonance frequency in bearing fault feature extraction. Transactions of the Institute of Measurement and Control, 42(3):518–527, 2020. doi: 10.1177/0142331219875348.
  • [15] K. Dragomiretskiy and D. Zosso. Variational mode decomposition. IEEE Transactions on Signal Processing, 62(3):531–544, 2014. doi: 10.1109/TSP.2013.2288675.
  • [16] A. Lakikza, H. Cheghib, and N. Kahoul. Diagnosis of bearing faults in wind turbine systems using vibrational signal processing and machine learning. Diagnostyka, 25(3):2024307, 2024. doi: 10.29354/diag/191393.
  • [17] A. Kumar, Y. Zhou, and J. Xiang. Optimization of VMD using kernel-based mutual information for the extraction of weak features to detect bearing defects. Measurement, 168:108402, 2021. doi: 10.1016/j.measurement.2020.108402.
  • [18] Z. Qiao, Y. Lei, and N. Li. Applications of stochastic resonance to machinery fault detection: A review and tutorial. Mechanical Systems and Signal Processing, 122:502–536, 2019. doi: 10.1016/j.ymssp.2018.12.032.
  • [19] S. Liu, S. Hou, K. He, and W. Yang. L-Kurtosis and its application for fault detection of rolling element bearings. Measurement, 116:523–532, 2018. doi:10.1016/j.measurement.2017.11.049.
  • [20] H. Liu and J. Xiangi. A strategy using variational mode decomposition, L-Kurtosis and minimum entropy deconvolution to detect mechanical faults. IEEE Access, 7:70564-70573, 2019. doi: 10.1109/ACCESS.2019.2920064.
  • [21] Vibration Database. Case Western Reserve University, 2024. https://engineering.case.edu/bearingdatacenter/download-data-file
  • [22] XJTU-SY Bearing Dataset for Fault Diagnosis, [Online]. Available: https://biaowang.tech/xjtu-sy-bearing-datasets/
  • [23] B. Wang, Y. Lei, N. Li, and N. Li. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings. IEEE Transactions on Reliability, 69(1):401–412, 2020.doi: 10.1109/TR.2018.2882682.
  • [24] E. Bechhoefer, B. Van Hecke, and D. He. Processing for improved spectral analysis. Annual Conference of the Prognostics and Health Management Society, New Orleans, USA, 2013. doi: 10.36001/phmconf.2013.v5i1.2220.
  • [25] The data is available on this website: https://github.com/mathworks/WindTurbineHighSpeed BearingPrognosis-Data
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c640b6e8-3aca-40b0-ba9f-9846ac1e5bc1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.