PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Coal Enrichment Methods by Using Microorganisms and Their Metabolites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to review the literature on the methods of low-rank coal enrichment by using microorganisms and their metabolites. Effective bio-beneficiation technologies for low-rank coals in the future are also suggested throughout this paper. An extensive literature review highlights recent advances in bio-beneficiation technologies for low rank coals. This paper presents the state of the art in the field of the bio-beneficiation technology - carbon leaching with the aid of microorganisms, especially fungi. The knowledge of the low-rank coals leaching is an important step to meet the carbon eco-requirements and improve the economics of mining companies. There are several reasons to investigate microbial activities towards coal. This paper presents the current state of knowledge concerning bioleaching of coal. Thus, in view of the increasing importance of hard coal as a raw material and energy source, it seems hopeful to study the potential of microorganisms to modify the low-rank coal structure.
Rocznik
Strony
213--220
Opis fizyczny
Bibliogr. 48 poz., tab., rys.
Twórcy
autor
  • Central Mining Institute, Department of Water Protection, Plac Gwarków 1, 40-166 Katowice, Poland
autor
  • Central Mining Institute, Department of Water Protection, Plac Gwarków 1, 40-166 Katowice, Poland
autor
  • Medical University of Silesia in Katowice, Department of Public Health, Piekarska 18 St., 41-900 Bytom, Poland
Bibliografia
  • 1. Abdel–Khalek M.A., El–Midany A.A. 2013. Coal – Mycobacterium phlei interaction and its effect on coal cleaning. Tenside Surfactants Detergents, 50(6), 414–419.
  • 2. Adegunlola G.A., Oloke J.K., Majolagbe O.N., Adebayo E.A. Adegunlola C.O., Adewoyin A.G., Adegunlola F.O. 2012. Microbial desulphurization of crude oil using Aspergillus flavus. European Journal of Experimental Biology, 2(2), 400–403.
  • 3. Aller A., Martınez O., De Linaje J.A., Mendez R., Moran A. 2001. Biodesulphurization of coal by microorganisms isolated from the coal itself. Fuel processing technology, 69(1), 45–57.
  • 4. Aytar P., Aksoy D.O., Toptas Y., Cabuk A., Koca S., Koca H. 2014. Isolation and characterization of native microorganism from Turkish lignite and usability at fungal desulphurization. Fuel, 116, 634– 641. doi:10.1016/j.fuel.2013.08.077
  • 5. Aytar P., Gedikli S., Samb M., Ünal A., Cabuk A., Kolankaya N., Yurum A. 2011. Desulphurization of some low-rank Turkish lignites with crude laccase produced from Trametes versicolor ATCC 200801. Fuel Processing Technology, 92(1), 71–76.
  • 6. Bielowicz, B. 2010. New technological classification of lignite as a basis for balanced energy management. Gospodarka Surowcami Mineralnymi, 26(2), 25–39.
  • 7. Blazquez M. L., Ballester A., Gonzalez F., Mier J.L. 1993. Coal biodesulphurization: a review. Biorecovery, 2, 155–177.
  • 8. Bosecker K. 1997. Bioleaching: metal solubilisation by microorganisms. FEMS Microbiology Reviews, 20(3–4), 591–604.
  • 9. Bozdemir T.O., Durusoy T., Erincin E., Yurum Y. 1996. Biodesulfurization of Turkish lignites: 1. optimization of the growth parameters of Rhodococcus rhodochrous, a sulfur-removing bacterium. Fuel, 13(75), 1596–1600. doi:10.1016/0016–2361 (96)00118–4
  • 10. Brandl H. 2001. Microbial Leaching of Metals, in Biotechnology Set, Second Edition (eds H.−J. Rehm, G. Reed), Wiley-VCH Verlag GmbH, Weinheim, Germany. doi: 10.1002/9783527620999. ch8k
  • 11. Cardona I.C., Marquez M.A. 2009. Biodesulfurization of two Colombian coals with native microorganisms. Fuel Processing Technology, 90(9), 1099–1106. doi: 10.1016/j.fuproc.2009.04.022
  • 12. Durusoy T., Bozdemir T.O., Erincin E., Yurum Y. 1997. Biodesulfurization of Turkish lignites: 2. Microbial desulfurization of Mengen lignite by the mesophilic microorganism Rhodococcus rhodochrous. Fuel, 76(4), 341–344. doi:10.1016/ S0016–2361(96)00237–2
  • 13. Elcey C.D., Manoj B. 2014. Investigation on biosolubilization of coal by Aspergillus Niger. Chemical Science Transactions, 3(3), 1200–1206. doi:10.7598/cst2014.824
  • 14. Erincin E., Durusoy T., Bozdemir, T.O., Yurum, Y. 1998. Biodesulphurization of Turkish lignites. 3. The effect of lignite type and particle size on microbial desulfurization by Rhodococcus Rhodochrous. Fuel, 77(9–10), 1121–1124.
  • 15. Fecko P., Ovcari P., Farkasova A. 2002. Bacterial desulphurisation of coal. Polish Geological Institute Special Papers, 7, 87–92.
  • 16. Fecko P., Pectova I., Cablik V., Riedlova S., Ovcari P., Tora B. 2006. Bacterial desulphurization of coal. Górnictwo i Geoinżynieria, 30(3/1), 47−65.
  • 17. Gonsalvesh L., Marinov S.P., Stefanova M., Carleer R., Yperman J. 2012. Organic sulphur alterations in biodesulphurized low rank coals. Fuel, 97, 489–503. doi:10.1016/j.fuel.2012.02.015
  • 18. Gonsalvesh L., Marinov S.P., Stefanova M., Yurum Y., Dumanli A.G., Dinler-Doganay G., Kolankaya N., Sam M., Carleer R., Reggers G., Thijssen E., Yperman J. 2008. Biodesulphurized subbituminous coal by different fungi and bacteria studied by reductive pyrolysis. Part 1: Initial coal. Fuel, 87(12), 2533–2543. doi:10.1016/j.fuel.2008.01.030
  • 19. Hallberg K.B., Johnson D.B. 2001. Biodiversity of acidophilic prokaryotes. Advances in Applied Microbiology, 49, 37–84.
  • 20. Holker U., Fakoussa R.M., Hofer M. 1995. Growth substrates control the ability of Fusarium oxysporum to solubilize low–rank coal. Applied Microbiology and Biotechnology, 44(3–4), 351–355.
  • 21. Hong F.–F., He H., Liu J.–Y., Tao X.–X., Zheng L., Zhao Y.–D. 2013. Comparison analysis of coal biodesulfurization and coal’s pyrite bioleaching with Acidithiobacillus ferrooxidans. The Scientific World Journal, (1–9). doi:10.1155/2013/184964
  • 22. Igbinigie E.E., Aktins S., Van Breugel Y., Van Dyke S., Davies–Coleman M.T., Rose P.D. 2008. Fungal biodegradation of hard coal by a newly reported isolate, Neosartorya fischeri. Biotechnology Journal, 3(11), 1407–16. doi: 10.1002/biot.200800227
  • 23. Johnson D.B. 1998. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiology Ecology, 27(4), 307–317. doi:10.1016/ S0168–6496(98)00079–8
  • 24. Kasiński J.R., Piwocki M. 2002. Low–rank coals in Poland: prospection – mining – progress. Polish Geological Institute Special Papers, 7, 17–30.
  • 25. Kim D.J., Gahan C.S., Akilan C., Choi S.Y., Kim B. G. 2013. Microbial desulfurization of three different coals from Indonesia, China and Korea in varying growth medium. Korean Journal of Chemical Engineering, 30(3), 680– 687.
  • 26. Kinzler K., Gehrke T., Telegdi J., Sand, W. 2003. Bioleaching–a result of interfacial processes caused by extracellular polymeric substances (EPS). Hydrometallurgy, 71(1–2), 83–88.
  • 27. Kisielowska E., Hołda A., Młynarczykowska A. 2014. Biodesulphurisation of coal with the use of Acidithiobacillus thioparus bacteria. Przegląd Górniczy, 70(5), 124–128.
  • 28. Kisielowska E., Hołda A., Niedoba T. 2010. Removal of heavy metals from coal medium with application of biotechnological methods. Górnictwo i Geoinżynieria, 34(4/1), 93–104.
  • 29. Krebs W., Brombacher C., Bosshard P.P., Bachofen R. Brandl, H. 1997. Microbial recovery of metals from solids. FEMS Microbiology Reviews, 20(3– 4), 605–617.
  • 30. Machnikowska H., Pawelec K., Podgórska A. 2002. Microbial degradation of low rank coals. Fuel Processing Technology, 77–78(20), 17–23.
  • 31. Manoj B. 2013. Bio-demineralization of Indian bituminous coal by Aspergillus niger and characterization of the products. Research Journal of Biotechnology, 8(3), 49–54.
  • 32. Manoj B., Elcey C.D. 2013. Demineralization of sub-bituminous coal by fungal leaching: a structural characterization by X-ray and FTIR analysis. Research Journal of Chemistry and Environment, 17(8), 11–15.
  • 33. Mukasa–Mugerwa T.T., Dames J.F., Rose P.D. 2011. The role of a plant/fungal consortium in the degradation of bituminous hard coal. Biodegradation, 22(1), 129–41. doi: 10.1007/ s10532–010–9382–8
  • 34. Pogliani C., Donati E. 1999. The role of exopolymers in the bioleaching of a non-ferrous metal sulphide. Journal of Industrial Microbiology & Biotechnology, 22(2), 88– 92.
  • 35. Polman J.K., Stoner D.L., Delezene-Briggs K.M. 1994. Bioconversion of coal, lignin, and dimethoxybenzyl alcohol by Penicillium citrinum. Journal of Industrial Microbiology & Biotechnology, 13(5), 292–299.
  • 36. Ramachandran S., Fontanille P., Pandey A., Larroche C. 2006. Gluconic acid, properties, applications and microbial production. Food Technology and Biotechnology, 44 (2), 185–195.
  • 37. Rawling D.E., Silver S. 1995. Mining with microbes. Nature Biotechnology, 13, 773–778. doi:10.1038/nbt0895–773
  • 38. Rossi G. 2014. The microbial desulfurization of coal. Advances in Biochemical Engineering/Biotechnology, 142, 147–167. doi: 10.1007/10_2013_178
  • 39. Ruamsap N., Akaracharanya A. 2002. Pyritic sulfur removal from lignite by Thiobacillus ferrooxidans: optimization of a bioleaching process. The Journal of Scientific Research, Chulalongkorn University, 27(2), 155–163.
  • 40. Sand W., Gehrke T., Hallmann R., Schippers A. 1995. Sulfur chemistry, biofilm, and the (in)direct attack mechanism – a critical evaluation of bacterial leaching. Applied Microbiology and Biotechnology, 43(6), 961–966.
  • 41. Sand W., Gehrke T., Jozsa P. –G., Schippers A. 2001. (Bio)chemistry of bacterial leaching direct vs. indirect bioleaching. Hydrometallurgy, 59(2– 3), 159–175.
  • 42. Sand W., Gehrke T., Jozsa P.–G., Schippers A. 1999. Direct versus indirect bioleaching. Process Metallurgy, 9(27–49). doi:10.1016/ S1572–4409(99)80004–2
  • 43. Sand W., Rhode K., Sobotke B., Zenneck C. 1992. Evaluation of Leptospirillum ferrooxidans for leaching. Applied and Environmental Microbiology, 58(1), 85–92.
  • 44. Schweinfurth S.P., 2009. An introduction to coal quality, [in:] Pierce B.S., Dennen K.O., eds., The National Coal Resource Assessment Overview: U.S. Geological Survey Professional Paper 1625– F, Chapter C, 16 p.
  • 45. Singh P.K., Singh A.L., Kumar A., Singh M.P. 2012. Mixed bacterial consortium as an emerging tool to remove hazardous trace metals from coal. Fuel, 102, 227–230. doi:10.1016/j.fuel.2012.06.039
  • 46. Tributsch H. 2001, Direct versus indirect bioleaching. Hydrometallurgy, 59, 177–185. doi:10.1016/ S0304–386X(00)00181-X
  • 47. Vera M., Schippers A., Sand W. 2013. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation–part A. Applied Microbiology and Biotechnology, 97(17), 7529– 41. doi: 10.1007/s00253–013–4954–2
  • 48. Xia W., Xie G., Peng Y. 2015. Recent advances in beneficiation for low rank coals, Powder Technology, 277, 206–221
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c63e7c9e-7f3c-4cd3-a799-712cfbc378db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.