PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Discussions and Comments on the Paper: E. S. Dzidowski, 2013, "The Effect of Secondary Metalworking Processes on Susceptibility of Aircraft to Catastrophic Failures and Prevention Methods", Archives of Metallurgy and Materials, 58 (4), pp. 1207-1212)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper ‘The effect of secondary metalworking processes on susceptibility of aircraft to catastrophic failures and prevention methods’ [1] emphasizes that fatigue is the main failure mode for metallic aircraft structures. This is corroborated by Figure 1 [2,3] and other sources [4-6]. (...) The discussions and comments in the following sections of the present document are directed to the foregoing statements and their validities.
Słowa kluczowe
Twórcy
  • Aerospace Vehicles, National Aerospace Centre NLR (Emeritus), 8303 Kl Emmeloord, Netherlands
Bibliografia
  • [1] E. S. Dzidowski, The effect of secondary metalworking processes on susceptibility of aircraft to catastrophic failures and prevention methods, Archives of Metallurgy and Materials 58 (4), 1207-1212 (2013).
  • [2] C. R. Brooks, A. Choudhury, Failure Analysis of Engineering Materials, McGraw-Hill, New York, NY 10121, USA 2001.
  • [3] S. J. Findley, N. D. Harrison, Why aircraft fail, Materials Today 5 (11), 18-25 (2002).
  • [4] G. S. Campbell, R. Lahey, A survey of serious aircraft accidents involving fatigue fracture, International Journal of Fatigue 6 (1), 25-30 (1984).
  • [5] R. J. H. Wanhill, Some notable aircraft service failures investigated by the National Aerospace Laboratory (NLR), Structural Integrity and Life 9 (2), 71-87 (2009).
  • [6] C. F. Tiffany, J. P. Gallagher, C. A. Babish IV, Threats to structural safety, including a compendium of selected structural accidents/incidents, USAF Technical Report ASC-TR-2010-5002, Aeronautical Systems Center Engineering Directorate, Wright-Patterson Air Force Base, OH 45433-7101, USA 2010.
  • [7] T. Khaled, Casting factors, Report #: ANM-112N-13-05, 14 January 2014, Federal Aviation Administration, Western Pacific Region, Lakewood, CA 90712, USA 2014.
  • [8] Metallic Materials Properties Development and Standardization (MMPDS) Handbook: updated regularly, e.g. Issue 10, Battelle Memorial Institute, Columbus, OH 43201, USA, (2016).
  • [9] R. Wanhill, L. Molent, S. Barter, Milestone case histories in aircraft structural integrity, Reference Module in Materials Science and Materials Engineering, Elsevier 2016, doi:10.1016/B978-0-12-803581-8.00847-X.
  • [10] J. W. Mar, Structural integrity of aging airplanes: a perspective, in: Structural Integrity of Aging Airplanes, Eds. S. N. Atluri, S. G. Sampath and P. Tong, Springer, Berlin, Germany, 241-262 (1991).
  • [11] Military Specification Airplane Damage Tolerance Requirements, MIL-A-83444, United States Air Force, The Pentagon, Virginia USA, 1974.
  • [12] Military Standard Aircraft Structural Integrity Program, Airplane Requirements, MIL-STD-1530A (11), United States Air Force, The Pentagon, Virginia USA, 1975.
  • [13] P. Safarian, Fatigue and Damage Tolerance Requirements of Civil Aviation, Lesson 01 - Introduction, Winter 2014, University of Washington, Seattle, WA 98195, USA 2013.
  • [14] E. S. Wilson, Developments in RAAF aircraft structural integrity, in: Estimation, Enhancement and Control of Aircraft Fatigue Performance, Eds. J. M. Grandage and G. S. Jost, Engineering Materials Advisory Services, Warley, UK II, 959-970 (1995).
  • [15] S. A. Barter, L. Molent, R. J. H. Wanhill, Fatigue life assessment for high performance metallic airframe structures - an innovative practical approach, in: Structural Failure Analysis and Prediction Methods for Aerospace Vehicles and Structures’, Ed. S.-Y. Ho, Bentham E-Books, Bentham Science Publishers, Sharjah, UAR, Chapter 1, 1-17 (2010).
  • [16] R. G. Eastin, W. Sippel, The “WFD rule” - have we come full circle?, USAF Aircraft Structural Integrity Program Conference 2011, November 29-December 1, 2011, San Antonio, TX 78205, USA 2011.
  • [17] J. G. Costa, R. E. Gonzalez, R. E. Guyotte, D. P. Salvano, T. Swift, R. J. Koenig, Titanium Rotating Components Review Team Report, December 14th 1990, United States of America Federal Aviation Administration, Aircraft Certification Service, Engine and Propeller Directorate, Burlington, MA 08103, USA 1990.
  • [18] R. Wanhill, S. Barter, Fatigue of Beta Processed and Beta Heat-treated Titanium Alloys, Springer Science+Business Media, Dordrecht, the Netherlands 2012.
  • [19] C. R. V. S. Nagesh, G. V. S. B. Kumar, B. Saha, A. A. Gokhale, Titanium sponge production and processing for aerospace applications, Chapter 4 in: Aerospace Materials and Material Technologies, Aerospace Materials, Eds. N.E Prasad and R. J. H. Wanhill, Springer Science+Business Media, Singapore, Volume 1: 73-89.
  • [20] A. Bhattacharjee, B. Saha, J. C. Williams, Titanium alloys: Part 1: physical metallurgy and processing, Chapter 5 in: Aerospace Materials and Material Technologies, Volume 1: Aerospace Materials, Eds. N. E. Prasad and R. J. H. Wanhill, Springer Science+Business Media, Singapore, 91-115 (2017).
  • [21] M. Chatterjee, A. Patra, R. R. Babu, M. N. Rao, Processing of aerospace metals and alloys: Part 1: special melting technologies, Chapter 1 in: Aerospace Materials and Material Technologies, Aerospace Material Technologies, Eds. N. E. Prasad and R. J. H. Wanhill, Springer Science+Business Media, Singapore, Volume 2: 3-24 (2017).
  • [22] B. Saha, R. J. H. Wanhill, N. E. Prasad, G. Gouda, K. Tamilmani, Airworthiness certification of metallic materials, Chapter 16 in: Aluminum-Lithium Alloys, Processing, Properties and Applications, Eds. N. E. Prasad, A. A. Gokhale and R. J. H. Wanhill, Butterworth-Heinemann (Elsevier), Oxford, UK, 537-554 (2014).
  • [23] M. S. K. Rao, P. Rambabu, C. V. S. Murthy, B. Jana, B. Saha, N. E. Prasad, P. Jayapal, K. Tamilmani, Airworthiness certification of metallic and non-metallic materials: The Indian approach and methodologies, Chapter 24 in: Aerospace Materials and Material Technologies, Aerospace Material Technologies, Eds. N. E. Prasad and R. J. H. Wanhill, Springer Science+Business Media, Singapore, Volume 2: 515-540 (2017).
  • [24] G. J. Reddy, R. J. H. Wanhill, A. A. Gokhale, Mechanical working of aluminum-lithium alloys, Chapter 7 in: Aluminum-Lithium Alloys, Processing, Properties and Applications, Eds. N.E. Prasad, A. A. Gokhale and R. J. H. Wanhill, Butterworth-Heinemann (Elsevier), Oxford, UK, 187-219 (2014).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c637234f-7c16-4441-a6bb-df4667347140
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.