PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electron beam technology for biogas and biofertilizer generation at municipal resource recovery facilities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Development and Applications of Nuclear Technologies NUTECH-2020 (04–07.10.2020; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
In the era of circular economies, municipal wastewater treatment plants (WWTPs) are viewed as resource recovery facilities. At the very minimum, the targeted resources are water, biogas, and phosphorus. However, municipal wastewater streams (sludge and effluent) need to be adequately treated to eliminate the potential for the transmission of microbial pathogens including protozoa, bacteria, and viruses. This paper presents the results from a study demonstrating the use of electron beam technology for sludge hygenization and enhanced methane (biogas) production using municipal wastewater samples. Cogeneration of heat for fertilizer drying and granulation and electricity for powering the electron beam system are also demonstrated.
Czasopismo
Rocznik
Strony
213--219
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Institute of Nuclear Chemistry and Technology Dorodna 16 Str., 03-195 Warsaw, Poland
  • Institute of Nuclear Chemistry and Technology Dorodna 16 Str., 03-195 Warsaw, Poland
autor
  • International Atomic Energy Agency Wagramerstrasse 5, Vienna, A-1400, Austria
  • National Center for Electron Beam Research Texas A&M AgriLife Research Texas A&M University, USA
Bibliografia
  • 1. Sorensen, A. & Okata, J. (Eds.). (2011). Megacities: Urban form, governance, and sustainability. Library for sustainable urban regeneration. (Vol. 10). New York: Springer. DOI: 10.1111/juaf.12120.
  • 2. Department of Economic and Social Affairs. (2015). World urbanization prospects: the 2014 revision. (ST/ESA/SER.A/366). New York: United Nations. Available from https://population.un.org/wup/Publications/Files/WUP2014-Report.pdf.
  • 3. AlSayed, A., Soliman, M., & Eldyasti, A. (2020). Anaerobic-based water resources recovery facilities: A review. Energies, 13(14), 3662. DOI: 10.3390/en13143662.
  • 4. Pillai, S., & Reimers, R. (2010). Disinfecting and stabilizing biosolids using e-beam and chemical oxidants. (Vol. 9). London: IWA Publishing. DOI: https://doi.org/10.2166/9781843392996.
  • 5. European Union. (2008). EUR-Lex Directive EU/2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on Waste. Off. J. Eur. Communities, 150, 109–140.https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L0851&from=EN.
  • 6. Collivignarelli, M. C., Abbá, A., Trattarola, A., Carnevale Miino, M., Padovani, S., Katsoyiannis, I., & Torretta, V. (2019). Legislation for the reuse of biosolids on agricultural land in Europe: Overview. Sustainability, 11(21), 6015. DOI: 10.3390/su11216015.
  • 7. US Environmental Protection Agency. (1993). 40 CFR Parts 257, 405, and 503 (FRL-4203-3): Standards for use and disposal of sewage. Final rule. Fed Register, 58, 9248. Washington, DC: US Government Printing Office. https://www.epa.gov/sites/production/fi les/2020-02/documents/fr-2-19-1993-sewagesludge.pdf.
  • 8. Praveen, C. H., Jesudhasan, P. R., Reimers, R. S., & Pillai, S. D. (2013). Electron beam inactivation of selected microbial pathogens and indicator organisms in aerobically and anaerobically digested sewage sludge. Bioresour. Technol., 144, 652–657. DOI: 10.1016/j.biortech.2013.07.034.
  • 9. Chmielewski, A. G., Zimek, Z., Bryl-Sandelewska,T., Kosmal, W., & Kalisz, L., & Kaźmierczuk, M. (1995). Disinfection of municipal sewage sludgesin installation equipped with electron accelerator.Radiat. Phys. Chem., 46(4/6), 1071–1074. DOI:10.1016/0969-806X(95)00323-P.
  • 10. Kim, Y., Han, B., Kim, J. K., & Ben Yaacov, N. (2009).Design of electron beam sludge hygienization plant (SM/EB-25). https://www-pub.iaea.org/MTCD/publications/PDF/P1433_CD/datasets/papers/sm_eb-25.pdf.
  • 11. Kim, J. -K., Kim, Y., Han, B., & Yaacob, N. B. (2008).Sludge hygienization plant with electron beam. In Transactions of the Korean Nuclear Society Spring Meeting, Gyeongju, Korea, May 29–30, 200 8 (pp.633–634). https://www.kns.org/fi les/pre_paper/12/353%ED%95%9C%EB%B2%94%EC%88%98.pdf.
  • 12. Jianlong, W., & Jiazhuo, W. (2007). Application of radiation technology to sewage sludge processing: A review. J. Hazard. Mat., 143, 2–7. DOI: 10.1016/j.jhazmat.2007.01.027.
  • 13. Sudlitz, M., & Chmielewski, A. G. (2019). Application of ionizing radiation for treatment of sludge from waste water treatment plant. “Zero-energy” technology for sewage sludge treatment. (Raporty IChTJ. Seria B no. 2/2019). Warsaw: Institute of NuclearChemistry and Technology. Available from http://www.ichtj.waw.pl/ichtj/publ/b_report/b2019_02.htm. (in Polish).
  • 14. Chmielewski, A. G., & Sudlitz, M. (2019). ‘Zero energy’ electron beam technology for sludge hygienization. Nukleonika, 64(2), 55–63. DOI: 10.2478/nuka-2019-0007.
  • 15. IEA Bioenergy. (2018). The role of anaerobic digestion and biogas in the circular economy. (Task 37). https://www.ieabioenergy.com/wp-content/uploads/2018/08/anaerobic-digestion_web_END.pdf.
  • 16. Zimek, Z. (1989). Electron accelerators for environmental protection. Warsaw: Institute of Nuclear Chemistry and Technology. (Raporty IChTJ. Seria B no. 8/98). https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/003/31003497.pdf.
  • 17. Chmielewski, A. G. (2011). Electron accelerators for environmental protection. Reviews of Accelerators Science and Technology, 04(01), 147–159. DOI: 10.1142/S1793626811000501.
  • 18. Chmielewski, A. G., & Han, B. (2017). Electron beam technology for environmental pollution control. In M. Venturi & M. D’Angelantonio (Eds.), Applications of radiation chemistry in the fields of industry, biotechnology and environment (pp. 37–66). Springer.DOI: 10.1007/978-3-319-54145-7_2.
  • 19. Chmielewski, A. G. & Zimek, Z. (Eds.). (2019). Electron accelerators for research, industry and environment − the INCT perspective. Warsaw: Institute of Electronic Systems, Warsaw University of Technology. https://zenodo.org/record/3237554#.XTlKSHvgqUl.
  • 20. Park, W., Hwang, M. -H., Kim, T. -H., Lee, M. -J.,& Kim, I. S. (2009). Enhancement in characteristics of sewage sludge and anaerobic treatability by electron beam pre-treatment. Radiat. Phys. Chem., 78,124–129. DOI: 10.1016/j.radphyschem.2008.09.010.
  • 21. Shin, K. -S., & Kang, H. (2003). Electron beam pretreatment of sewage sludge before anaerobic digestion. Appl. Biochem. Biotechnol., 109, 227–231.DOI: 10.1385/abab:109:1-3:227.
  • 22. Garlicka, A., Żubrowska-Sudoł, M., Umiejewska, K., Roubinek, O., Palige, J., & Chmielewski, A. G. (2020). Effects of thickened excess sludge pre-treatment using hydrodynamic cavitation for anaerobic digestion. Energies, 13, 2483. DOI: 10.3390/en13102483.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c634cd2e-36e8-4ce8-97ff-0fe779daa8e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.