PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detailed micro-modeling of partially grouted reinforced masonry shear walls: extended validation and parametric study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Partially grouted reinforced masonry (PG-RM) shear walls have been widely used as structural elements in low- and medium-rise earthquake-resistant buildings. Nonetheless, assessing its shear strength represents a complex task mainly because the partial grouting provides a non-constant cross section, which results in heterogeneous stress–strain patterns. Consequently, refined modeling techniques are needed to reproduce local failure mechanisms taking place in these walls, which significantly influence the global response. In response to this issue, a detailed micro-modeling approach based on the finite element method was proposed in previous studies by the authors. Although the numerical strategy provided accurate results, further validation is required. Therefore, in this study, the experimental results of seven PG-RM shear walls of multi-perforated clay bricks with bed-joint reinforcement are employed as validation cases. These seven walls presented variations in five design parameters. The validated numerical model was then employed to perform a parametric study to assess the influence of the wall aspect ratio, axial pre-compression stress, and horizontal reinforcement ratio on the in-plane lateral behavior of PG-RM shear walls. The obtained results show that the three studied design parameters modified the crack patterns of the walls. Besides, increasing the axial pre-compression stress or reducing the aspect ratio resulted in higher walls’ shear strength. Additionally, decreasing the horizontal reinforcement ratio or increasing the aspect ratio generated a higher story-drift ratio at maximum lateral force. Finally, it was corroborated that the positive effect of the axial pre-compression stress on the walls’ shear strength decreases inversely proportional to the aspect ratio.
Rocznik
Strony
114--137
Opis fizyczny
Bibliogr. 46 poz., rys., wykr.
Twórcy
  • Department of Structural and Geotechnical Engineering, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile
  • Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
  • Department of Structural and Geotechnical Engineering, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile
  • School of Architecture, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile
  • Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
autor
  • Iktes, Mexico city, Mexico
Bibliografia
  • [1] Astroza M, Moroni O, Brzev S, Tanner J. Seismic performance of engineered masonry buildings in the 2010 Maule earthquake. Earthq Spectra. 2012;28:385–406.
  • [2] EERI. The Mw 8.8 Chile Earthquake of February 27, 2010. EERI Spec Earthq Rep 2010;10.
  • [3] Calderón S, Sandoval C, Inzunza E, Cruz-Noguez C, Rahim AB, Vargas L. Influence of a window-type opening on the shear response of partially-grouted masonry shear walls. Eng Struct. 2019;201:10978. https:// doi. org/ 10. 1016/j. engst ruct. 2019. 109783.
  • [4] Sandoval C, Calderón S, Almazan JL. Experimental cyclic response assessment of partially grouted reinforced clay brick masonry walls. Bull Earthq Eng. 2018;16:3127–52. https:// doi. org/ 10. 1007/ s10518- 018- 0308-x.
  • [5] Araya-Letelier G, Calderón S, Sandoval C, Sanhueza M, Murcia-Delso J. Fragility functions for partially-grouted masonry shear walls with bed-joint reinforcement. Eng Struct. 2019;191:206–18. https:// doi. org/ 10. 1016/j. engst ruct. 2019. 03. 114.
  • [6] Ba Rahim A, Hung J, Pettit C, Cruz-Noguez C. Effect of interior vertical reinforcement on the performance of partially grouted masonry shear walls. 13th North Am. Mason. Conf. 16–19 June, Salt Lake City, United States of America: The masonry society; 2019.
  • [7] Mavros M. Experimental and Numerical Investigation of the Seismic Performance of Reinforced Masonry Structures. Ph.D. dissertation. University of California, San Diego, 2015.
  • [8] Koutras AA, Shing PB. Seismic behavior of a partially grouted reinforced masonry structure: shake-table testing and numerical. analyses. Earthq Eng Struct Dyn. 2020. https:// doi. org/ 10. 1002/ eqe. 3281.
  • [9] Bolhassani M, Hamid AA, Moon FL. Enhancement of lateral inplane capacity of partially grouted concrete masonry shear walls. Eng Struct. 2016;108:59–76.
  • [10] Minaie E. Behavior and vulnerability of reinforced masonry shear walls. Ph.D. dissertation. Drexel University, 2009.
  • [11] Calderón S, Arnau O, Sandoval C. Detailed micro-modeling approach and solution strategy for laterally loaded reinforced masonry shear walls. Eng Struct. 2019. https:// doi. org/ 10. 1016/j. engst ruct. 2019. 109786.
  • [12] Calderón S, Milani G, Sandoval C. Simplified micro-modeling of partially-grouted reinforced masonry shear walls with bed-joint reinforcement: Implementation and validation. Eng Struct. 2021;234:111987. https:// doi. org/ 10. 1016/j. engst ruct. 2021. 111987.
  • [13] Calderón S, Sandoval C, Araya-Letelier G, Inzunza E, Milani G. Quasi-static testing of concrete masonry shear walls with different horizontal reinforcement schemes. J Build Eng. 2021;38:102201. https:// doi. org/ 10. 1016/j. jobe. 2021. 102201.
  • [14] Sandoval C, Arnau O. Experimental characterization and detailed micro-modeling of multi-perforated clay brick masonry structural response. Mater Struct. 2017;50:34. https:// doi. org/ 10. 1617/ s11527- 016- 0888-3.
  • [15] Van der Pluijm R, Rutten H, Ceelen M. Shear behaviour of bed joints. 12th Int. Brick/Block Mason. Conf., Madrid, Spain, 2000;1849–62.
  • [16] Sarhosis V, Lemos JV. A detailed micro-modelling approach for the structural analysis of masonry assemblages. Comput Struct. 2018;206:66–81. https:// doi. org/ 10. 1016/j. comps truc. 2018. 06. 003.
  • [17] Arnau O, Sandoval C, Murià-Vila D. Determination and validation of input parameters for detailed micro-modelling of partially grouted reinforced masonry walls. Proc. Tenth Pacific Conf. Earthq. Eng., Sydney: 2015.
  • [18] Calderón S, Sandoval C, Arnau O. Shear response of partially-grouted reinforced masonry walls with a central opening: testing and detailed micro-modelling. Mater Des. 2017;118:122–37. https:// doi. org/ 10. 1016/j. matdes. 2017. 01. 019.
  • [19] Calderón S, Sandoval C, Araya-Letelier G, Inzunza-Araya E, Arnau O. Influence of different design parameters on the seismic performance of partially grouted masonry shear walls. Eng Struct. 2021;239:112058. https:// doi. org/ 10. 1016/j. engst ruct. 2021. 112058.
  • [20] DIANA FEA. DIANA-Finite element analysis 2017.
  • [21] DIANA FEA. User’s Manual-Element Library-DIANA release 10.2. Delft, The Netherlands: DIANA FEA BV; 2018.
  • [22] DIANA FEA. User’s Manual-Material Library-DIANA release 10.2. DIANA FEA BV; 2018.
  • [23] Lourenço PB, Vasconcelos G, Medeiros P, Gouveia J. Vertically perforated clay brick masonry for loadbearing and non-loadbearing masonry walls. Constr Build Mater. 2010;24:2317–30.
  • [24] Comite Euro-International Du Beton. CEB-FIP Model code 1990. Lausanne, Switzerland: Thomas Telford; 1993.
  • [25] Nakamura H, Higai T. Compressive fracture energy and fracture zone length of concrete. Model. Inelast. Behav. RC Struct. under Seism. loads, American Society of Civil Engineers; 2001, p. 471–87.
  • [26] FIB. Model code for concrete structures 2010. Berlin: Ernst & Sohn; 2013.
  • [27] Fouchal F, Lebon F, Titeux I. Contribution to the modelling of interfaces in masonry construction. Constr Build Mater. 2009;23:2428–41. https:// doi. org/ 10. 1016/j. conbu ildmat. 2008. 10. 011.
  • [28] van Zijl GPAG. Modeling masonry shear-compression: role of dilatancy highlighted. J Eng Mech. 2004;130:1289–96. https:// doi. org/ 10. 1061/ (ASCE) 0733- 9399(2004) 130: 11(1289).
  • [29] Rots J. Structural masonry: an experimental/ numerical basis for practical design rules (CUR Report 171). Rotterdam: CRC Press; 1997.
  • [30] Broyden CG. The convergence of a class of double-rank minimization algorithms. J Inst Math Its Appl. 1970;6:76–90.
  • [31] Crisfield MA. Non-linear finite element analysis of solids and structures. Volume 1: Essentials. Chichester: Wiley; 1991.
  • [32] DIANA FEA. User’s Manual-Analysis Procedures. DIANA Release 10.2. First edit. Delft, The Netherlands: DIANA FEA BV; 2017.
  • [33] FEMA. FEMA 461. Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components. Washington: Federal Emergency Management Agency; 2007.
  • [34] Calderón S. Experimental and numerical study of partially grouted reinforced masonry shear walls subjected to in-plane loading. (Ph.D. dissertation). Pontificia Universidad Católica de Chile and Politecnico di Milano, 2021.
  • [35] Aguilar V, Sandoval C, Adam JM, Garzón-Roca J, Valdebenito G. Prediction of the shear strength of reinforced masonry walls using a large experimental database and artificial neural networks. Struct Infrastruct Eng. 2016;12:1661–74.
  • [36] Shing PB, Schuller M, Hoskere VS. In-plane resistance of reinforced masonry shear walls. J Struct Eng. 1990;116:619–40.
  • [37] Psilla N, Tassios T. Design models of reinforced masonry walls under monotonic and cyclic loading. Eng Struct. 2009;31:935–45.
  • [38] CSA. S304.14-Design of masonry structures. Mississauga, ON. Canada: CSA Group; 2014.
  • [39] TMS. TMS 402/602-16. Building code requirements and specifications for masonry structures. Longmont, Colorado: The Masonry Society; 2016.
  • [40] INN. NCh 1928. Of1993 Mod2009: Albañilería armada-Requisitos para el diseño y cálculo. Santiago, Chile: Instituto Nacional de Normalización; 2009.
  • [41] Tomaževič M, Lutman M. Seismic resistance of reinforced masonry walls. Proc. Ninth World Conf. Earthq. Eng., vol. 6, Tokyo-Kyoto: 1988.
  • [42] Schultz AE. Seismic resistance of partially-grouted masonry shear walls. Worldw. Adv. Struct. Concr. Mason., ASCE; 1996, p. 211–22.
  • [43] Diez J. Estudio experimental de muros de albañilería sometidos a carga lateral alternada. Tesis para optar al título de ingeniero civil. Universidad de Chile, 1987.
  • [44] Sepúlveda M. Influencia del refuerzo horizontal en el comportamiento sísmico de muros de albañilería armada. Master thesis. Pontificia Universidad Católica de Chile, 2003.
  • [45] Elmapruk J. Shear strength of partially grouted squat masonry shear walls. Master’s thesis. Washington State University, 2010.
  • [46] Nolph S, ElGawady M. Static cyclic response of partially grouted masonry shear walls. Struct Eng. 2012;138:864–79. https:// doi. org/ 10. 1061/ (ASCE) ST. 1943- 541X.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c6328e7f-fff1-4859-ab18-df43fddfcff8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.