PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hybrid Modelling Using Lattice Boltzmann and Finite Difference Methods of Dikes Effect on Sediment Transport and Morphological Processes with a Quasi-Tridimensional Approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the development of a quasi-three-dimensional model that utilizes an equilibrium technique to investigate the morphological change of a channel focused on transport of sediment. The authors developed a computational algorithm that integrates two numerical techniques, specifically the Lattice Boltzmann Method (LBM) and the finite-difference method (FDM), to perform a hybrid calculation. The aforementioned algorithm was employed to investigate the impact of dykes on the dynamics of channel flow, sediment transport, and bed evolution. To derive the three-dimensional velocity field, the Boltzmann lattice method is employed to compute the two horizontal components of the vertically integrated velocity. Subsequently, these two components are combined with a logarithmic vertical profile. The process of sediment particle transport can be divided into two components: the bed load transport rate and the suspended load transport rate. The latter determination is achieved through the computation of the equilibrium flow rate of suspended sediment, which is derived from the equilibrium concentrations and logarithmic velocities. by comparing its outputs to previous research on constant width channels and horizontal beds, especially in dykes, the model was validated. This model accurately predicts sediment transport as bed load and suspended load, which is important for understanding sediment dynamics around such structures. the model’s ability to anticipate sediment erosion and deposition across the channel, providing crucial insights into river detours and other sedimentary processes.
Twórcy
  • LS2ME Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University BP: 145, 25000, Morocco
  • LS2ME Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University BP: 145, 25000, Morocco
  • LS2ME Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University BP: 145, 25000, Morocco
  • LS2ME Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University BP: 145, 25000, Morocco
Bibliografia
  • 1. Adamsson Å., Lars V.B. 2003. Bed shear stress boundary condition for storage tank sedimentation. Journal of Environmental Engineering, 129(7), 651–658.
  • 2. Aidun C.K. and Clausen, J.R 2010. Latticeboltzmann method for complex flows. Annual review of fluid mechanics, 42, 439–472.
  • 3. Bagnold R.A. 1956. The flow of cohesionless grains in fluids. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 249(964), 235–297.
  • 4. Benkhaldoun F.E., Mohammed I.S. 2007. Well-balanced finite volume schemes for pollutant transport by shallow water equations on unstructured meshes. Journal of computational physics, 226(1), 180–203.
  • 5. Bernsdorf J., Durst F., Schäfer M. 1999. Comparison of cellular automata and finite volume techniques for simulation of incompressible flows in complex geometries. International Journal for Numerical Methods in Fluids, 29(3), 251–264.
  • 6. Bhatnagar P.L., Gross E.P., and Krook M. 1954. A Model for collision processes in gases. I. Small Amplitude Processes in Charged and Neutral OneComponent Systems. Physical review, 94(3), 511.
  • 7. Brush S.G. 2003. Kinetic theory of gases, The: an anthology of classic papers with historical commentary. World Scientific.
  • 8. Cai L.X., Feng W.-X., Zhou J.-H. 2007. Computations of transport of pollutant in shallow water. Applied Mathematical Modelling, 31(3), 490–498.
  • 9. Charafi M.M.S., Kamal A A. and Menai, A. 2000. Numerical modeling of water circulation and pollutant transport in a shallow basin. International Journal of Modern Physics C, 11(4), 655–664.
  • 10. Charafi M.M.S., Kamal A.A, and Menai, A. 2000. Quasi-three-dimensional mathematical modeling of morphological processes based on equilibrium sediment transport. International Journal of Modern Physics C, 11(07), 1425–1436.
  • 11. Chen S. and Gary D.D. 1998. Lattice boltzmann method for fluid flows. Annual review of fluid mechanics, 30(1), 329–364.
  • 12. Einstein H.A. 1950. The Bed-Load Function for Sediment Transportation in Open Channel Flows. US Department of Agriculture.
  • 13. Gawas A.S. and Dhiraj V.P. 2021. Axisymmetric lattice boltzmann formulation for mixed convection with anisotropic thermal diffusion and associated bubble breakdown. Physics of Fluids, 33(3).
  • 14. Guo Z. and Chang S. 2013. Lattice Boltzmann method and its application in engineering. World Scientific.
  • 15. Hu C.J., Guo, Q.Z. 2010. Flow movement and sediment transport in compound channels. Journal of Hydraulic Research, 48(1), 23–32.
  • 16. Kalinske A.A. 1947. Movement of sediment as bed load in rivers. Eos, Transactions American Geophysical Union, 28(4), 615–620.
  • 17. Klar A.S., Guido M.T. 2008. Lattice boltzmann simulation of depth-averaged models in flow hydraulics. International Journal of Computational Fluid Dynamics, 22(7), 507–522.
  • 18. Mohamad A.A. 2011. Lattice Boltzmann Method. Springer.
  • 19. Rijn, L.C. 1984. Sediment transport, part II: Suspended load transport. Journal of hydraulic engineering, 110(11), 1613–1641.
  • 20. Van Rijn L.C. 1989. Mathematical Modelling of Morphological Processes in the Case of Suspended Sediment Transport.
  • 21. Rouse H. 1937. Modern conceptions of the mechanics of fluid turbulence. Transactions of the American Society of Civil Engineers, 102(1), 463–505.
  • 22. Shi Y. and Xiaowen S. 2021. A multiple-relaxationtime collision model for nonequilibrium flows. Physics of Fluids, 33(3).
  • 23. Suzuki K.I., Nakamura T., Horai A., Pan F., Masato K.-L.Y. 2021. Simple extended lattice boltzmann methods for incompressible viscous single-phase and two-phase fluid flows. Physics of Fluids, 33(3).
  • 24. Balam R.I., Nguyen K.D., Salazar L.G., Zapata M.U. 2021. An unstructured finite-volume semicoupled projection model for bed load sediment transport in shallow-water flows. Journal of Hydraulic Research, 59(4), 545–558.
  • 25. Wen M., Li W., Zhao Z. 2022. A hybrid scheme coupling lattice boltzmann method and finite-volume lattice boltzmann method for steady incompressible flows. Physics of Fluids, 34(3).
  • 26. Wu B., Zhang B., ShiY., Li S. 2021. Large eddy simulation of sediment transport in high flow intensity by discrete particle method. Journal of Hydraulic Research, 59(4), 605–620.
  • 27. Zhou J.G. 2002. A lattice boltzmann model for the shallow water equations with turbulence modeling. International Journal of Modern Physics C, 13(08), 1135–1150.
  • 28. Zou Q. and He X. 1997. On pressure and velocity boundary conditions for the lattice boltzmann BGK model. Physics of fluids, 9(6), 1591–1598.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c62b8c68-270b-4c51-99f6-c7ce277f0a34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.