PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implicit scheme of the finite difference method for the second-order dual phase lag equation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The second-order dual phase lag equation (DPLE) as a mathematical model of the microscale heat transfer is considered. It is known that the starting point determining the final form of this equation is the generalized Fourier law in which two positive constants (the relaxation and thermalization times) appear. Depending on the order of the generalized Fourier law expansion into the Taylor series, different forms of the DPLE can be obtained. As an example of the problem described by the second-order DPLE equation, thermal processes proceeding in the domain of a thin metal film subjected to a laser pulse are considered. The numerical algorithm is based on an implicit scheme of the finite difference method. At the stage of numerical modeling, the first, second and mixed order of the dual phase lag equation are considered. In the final part of the paper, examples of different solutions are presented and conclusions are formulated.
Rocznik
Strony
393--402
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology, Gliwice, Poland
autor
  • University of Occupational Safety Management, Katowice, Poland
Bibliografia
  • 1. Al-Nimr M.A., Naji M., Abdallah R.I., 2004, Thermal behavior of a multi-layered thin slab carrying periodic signals under the effect of the dual-phase-lag heat conduction model, International Journal of Thermophysics, 25, 3, 949-966
  • 2. Askarizadeh H., Baniasadi E., Ahmadikia H., 2017, Equilibrium and non-eqilibrium thermodynamic analysis of high-order dual-phase lag heat conduction, International Journal of Heat and Mass Transfer, 104, 301-309
  • 3. Castro M.A., Rodriguez F., Cabrera J., Martin, J.A., 2016, A compact difference scheme for numerical solution of second order dual-phase-lagging models of microscale heat transfer, Journal of Computational and Applied Mathematics, 201, 432-440
  • 4. Cattaneo M.C., 1948, Sulla conduzione de calor, Atti de Seminario Matematico e Fisico Della Universita di Modena, 3, 3, 3-21
  • 5. Chen J. K., Beraun J. E., 2001, Numerical study of ultrashort laser pulse interactions with metal films, Numerical Heat Tranfer A – Applications, 40, 1-20
  • 6. Ciesielski M., 2017a, Analytical solution of the dual phase lag equation describing the laser heating of thin metal film, Journal of Applied Mathematics and Computational Mechanics, 16, 1, 33-40
  • 7. Ciesielski M., 2017b, Application of the alternating direction implicit method for numerical solution of the dual phase lag equation, Journal of Theoretical and Applied Mechanics, 55, 3, 839-852
  • 8. Dai W., Nassar R., 2000, A compact finite difference scheme for solving a three-dimensional heat transport equation in a thin film, Numerical Methods for Partial Differential Equations, 16, 441-458
  • 9. Deng D., Jiang Y., Liang D. L., 2017, High-order finite difference methods for a second-order dual-phase-lagging models of microscale heat transfer, Applied Mathematics and Computation, 309, 31-48
  • 10. Faghri A., Zhang Y., Howell J., 2010, Advanced Heat and Mass Transfer, Global Digital Press
  • 11. Ho A.J.R., Kuo Ch.P., Jiaung W.S., 2003, Study of heat transfer in multilayered structure within the framework of dual-phase-lag heat conduction model using lattice Boltzmann method, International Journal of Heat and Mass Transfer, 46, 55-69
  • 12. Kaba I., Dai W., 2005, A stable three-level finite difference scheme for solving the parabolic two-step model in a 3D micro-sphere heated by ultrashort-pulsed lasers, Journal of Computational and Applied Mathematics, 181, 125-147
  • 13. Majchrzak E., Kałuża G., 2017, Analysis of thermal processes occurring in the heated multilayered metal films using the dual-phase lag model, Archives of Mechanics, 69, 4-5, 275-287
  • 14. Majchrzak E., Mochnacki B., 2014, Sensitivity analysis of transient temperature field in microdomains with respect to dual-phase-lag-model parameters, International Journal for Multiscale Computational Engineering, 12, 1, 65-77
  • 15. Majchrzak E., Mochnacki B., 2016, Dual-phase lag equation. Stability conditions of a numerical algorithm based on the explicit scheme of the finite difference method, Journal of Applied Mathematics and Computational Mechanics, 15, 3, 89-96
  • 16. Majchrzak E., Mochnacki B., Suchy J.S., 2009, Numerical simulation of thermal processes proceeding in a multi-layered film subjected to ultrafast laser heating, Journal of Theoretical and Applied Mechanics, 47, 2, 383-396
  • 17. Mochnacki B., Paruch M., 2013, Estimation of relaxation and thermalization times in microscale heat transfer model, Journal of Theoretical and Applied Mechanics, 51, 4, 837-845
  • 18. Mohammadi-Fakhar V., Momeni-Masuleh S. H., 2010, An approximate analytic solution of the heat conduction equation at nanoscale, Physics Letters A, 374, 595-604
  • 19. Qiu T.Q., Juhasz T., Suarez C., Bron N.E., Tien C.L., 1994, Femtoscond laser heating of multi-layers metals. II Experiments, International Journal of Heat and Mass Transfer, 37, 17, 2799-2808
  • 20. Smith A. N., Norris P. M., 2003, Microscale Heat Transfer, Chapter 18, [In:] Heat Transfer Handbook, John Willey & Sons
  • 21. Roetzel W., Putra N., Das S.K., 2003, Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure, International Journal of Thermal Sciences, 42, 541-552
  • 22. Tang D.W., Araki N., 1999, Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses, International Journal of Heat and Mass Transfer, 42, 855-860
  • 23. Tzou D.Y., 1995, A unified field approach for heat conduction from macro- to micro-scales, Journal of Heat Transfer, ASME, 117, 1, 8-16
  • 24. Tzou D.Y., 2015, Macro to Microscale Heat Transfer: The Lagging Behavior, John Wiley & Sons, Ltd.
  • 25. Vernotte P., 1958, Les paradoxes de la theorie continue de l’equation de la chaleur, Comptes Rendus de l’Academie des Sciences, 246, 3154-3155
  • 26. Wang H., Dai W., Melnik R., 2006, A finite difference method for studying thermal deformation in a double-layered thin film exposed to ultrashort pulsed lasers, International Journal of Thermal Sciences, 45, 1179-1196
  • 27. Wang H., Dai W., Hewavitharana L.G., 2008, A finite difference method for studying thermal deformation in a double-layered thin film with imperfect interfacial contact exposed to ultrashort pulsed lasers, International Journal of Thermal Sciences, 47, 7-24
  • 28. Zhang Z.M., 2007, Nano/Microscale Heat Transfer, McGraw-Hill
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c627c856-6a35-4bb9-9bb4-ce2d2198e723
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.