PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigating Indian summer heatwaves for 2017–2019 using reanalysis datasets

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heatwaves are characterized by an increase in temperature to extreme levels, which adversely distress the living organisms. India ranks second in terms of disaster mortality among the world countries, preponderantly by heatwave—infuenced by regional climatology. In this study, the Excess Heat Factor (EHF) index is used to detect the heatwave using the ERA-Interim reanalysis dataset over various states of India during the summer period (April–June of 2017–2019). EHF categorizes heat waves based on the severity, which is an intensity measure created by combining the measures of excess heat, long-term temperatures anomaly characteristics by each location’s unique climatology of heat by various thresholds. The heatwave events are analysed by combining the means of excess heat and heat stress, which has a strong aspect of EHF measure ments. Concerning the intensity of future heatwaves, EHF index helps to analyse the frequency and intensity of heatwave episodes and alert those community most exposed to heat related illness. One of the indices is derived from a climatological background to analyse the severity of heatwave over the Indian states. The analysis over India using the EHF index refected a substantial rate of increase in the intensity and the frequency of heatwaves in the successive years with an average EHF intensity (mean EHF for the analysis period) of ~ 41 °C2 , ~ 38 °C2 and ~ 39 °C2 , especially over the north–western states, eastern coastal states and central and southern states, respectively. The results of this study serve as a drive in the risk and vulnerability planning and assessment.
Czasopismo
Rocznik
Strony
1447--1464
Opis fizyczny
Bibliogr. 67 poz.
Twórcy
autor
  • Department of Earth and Atmospheric Sciences, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
  • Department of Earth and Atmospheric Sciences, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
Bibliografia
  • 1. Andhra Pradesh State Disaster Management Authority (APSDMA) (2019) Heatwave action Plan - 2019. https://apsdma.ap.gov.in/latestupdate_pdfs/heatwave/March2019/Heat wave Action plan 2019.pdf
  • 2. Azhar G, Saha S, Ganguly P et al (2017) Heat wave vulnerability mapping for India. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph14040357
  • 3. Becker E (2019) September 2019 ENSO update: feeling neutral. https://www.climate.gov/news-features/blogs/enso/september-2019-enso-update-feeling-neutral
  • 4. Ceccherini G, Russo S, Ameztoy I et al (2017) Heat waves in Africa 1981–2015, observations and reanalysis. Nat Hazards Earth Syst Sci 17:115–125. https://doi.org/10.5194/nhess-17-115-2017
  • 5. Das PK, Podder U, Das R et al (2020) Quantification of heat wave occurrences over the Indian region using long-term (1979–2017) daily gridded (0.5° × 0.5°) temperature data—a combined heat wave index approach. Theor Appl Climatol 142:497–511. https://doi.org/10.1007/s00704-020-03329-7
  • 6. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828
  • 7. Edenhofer O, Pichs-Madruga R, Sokona Y (2014) Agriculture, Forestry and Other Land Use (AFOLU). In: Climate Change 2014 Mitigation of Climate Change. Cambridge University Press, p 1419. https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_frontmatter.pdf
  • 8. Ford TW, Dirmeyer PA, Benson DO (2018) Evaluation of heat wave forecasts seamlessly across subseasonal timescales. Npj Clim Atmos Sci. https://doi.org/10.1038/s41612-018-0027-7
  • 9. Ghodichore N, Vinnarasi R, Dhanya CT, Roy SB (2018) Reliability of reanalyses products in simulating precipitation and temperature characteristics over India. J Earth Syst Sci 127:1–21. https://doi.org/10.1007/s12040-018-1024-2
  • 10. Guha-Sapir D, Checchi F (2018) Science and politics of disaster death tolls. BMJ. https://doi.org/10.1136/bmj.k4005
  • 11. Guha-Sapir D, Vos F, Below R (2018) Annual disaster statistical review. Cent reserach epidemiol disasters/UCL.
  • 12. Gujarat State Disaster Management Authority (GSDMA) (2020) Gujarat State action plan: prevention and mitigation of impacts of heat wave - 2020. Gujarat, India. http://www.gsdma.org/uploads/Assets/other/gujaratstateheatwaveactionplan2020-2104252020
  • 13. Gupta P, Verma S, Bhatla R et al (2020) Validation of surface temperature derived from MERRA-2 reanalysis against IMD gridded data set over India. Earth Sp Sci 7:1–13. https://doi.org/10.1029/2019EA000910
  • 14. Heo S, Bell ML (2019) Heat waves in South Korea: differences of heat wave characteristics by thermal indices. J Expo Sci Environ Epidemiol 29:790–805. https://doi.org/10.1038/s41370-018-0076-3
  • 15. Im ES, Pal JS, Eltahir EAB (2017) Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci Adv 8:1–8. https://doi.org/10.1126/sciadv.1603322
  • 16. India Meteorological Department (IMD) (2018) Annual Report - 2017. New Delhi, India. https://metnet.imd.gov.in/imdnews/ar2017.pdf
  • 17. Katiyar S, Singh SP, Mishra K, et al (2020) Forecast Demonstration Project (FDP) for Improving Heat Wave Warning over India. New Delhi, India. https://internal.imd.gov.in/section/nhac/dynamic/fdpheatreport2019.pdf
  • 18. Kishore P, Jyothi S, Basha G et al (2016) Precipitation climatology over India: validation with observations and reanalysis datasets and spatial trends. Clim Dyn 46:541–556. https://doi.org/10.1007/s00382-015-2597-y
  • 19. Knochel JP, Reed G (1994) Disorders of heat regulation. In: Maxwell and Kleeman’s clinical disorders of fluid and electrolyte metabolism, 5th edn. McGraw-Hill, p 1712. https://books.google.co.in/books/about/Maxwell_Kleeman_s_Clinical_Disorders_of.html?id=3sjTNwAACAAJ&source=kp_book_description&redir_esc=y
  • 20. Kumar R, Mishra V (2019) Decline in surface urban heat island intensity in India during heatwaves. Environ Res Commun 1:1–9. https://doi.org/10.1088/2515-7620/ab121d
  • 21. Kumar SN, Singh AK, Aggarwal PK, et al (2012) Climate Change and Indian Agriculture: Impact, Adaptation and Vulnerability. New Delhi, India. https://www.iari.res.in/files/ClimateChange.pdf
  • 22. Larsen J (2003) Record Heat Wave in Europe Takes 35,000 Lives: Far Greater Losses May Lie Ahead. In: Earth Policy Inst. http://www.earth-policy.org/mobile/releases/update29
  • 23. Li XX (2020) Heat wave trends in Southeast Asia during 1979–2018: The impact of humidity. Sci Total Environ 721:13. https://doi.org/10.1016/j.scitotenv.2020.137664
  • 24. Loridan T, Coates L, Frontiers R, et al (2016) The excess heat factor as a metric for heat-related fatalities: defining heatwave risk categories. Aust J Emerg Manag 31:31–37. https://www.preventionweb.net/publications/view/51052
  • 25. Mall RK, Singh R, Gupta A et al (2006) Impact of climate change on Indian agriculture: a review. Clim Change 78:445–478. https://doi.org/10.1007/s10584-005-9042-x
  • 26. Mandal R, Joseph S, Sahai AK et al (2019) Real time extended range prediction of heat waves over India. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-45430-6
  • 27. McBride JL, Mills GA, Wain AG (2009) The meteorology of Australian heatwaves. In: Modelling and understanding high impact Weather. p 4. http://www.bom.gov.au/research/publications/cawcrreports/CTR_017
  • 28. Min KH, Chung CH, Bae JH, Cha DH (2020) Synoptic characteristics of extreme heatwaves over the Korean Peninsula based on ERA Interim reanalysis data. Int J Climatol 40:3179–3195. https://doi.org/10.1002/joc.6390
  • 29. Mishra V, Mukherjee S, Kumar R, Stone DA (2017) Heat wave exposure in India in current, 1.5 °c, and 2.0 °c worlds. Environ Res Lett. https://doi.org/10.1088/1748-9326/aa9388
  • 30. MOSDAC (2008) INSAT-Kalpana 1 VHR OLR. https://doi.org/1 https://doi.org/10.19038/SAC/10/K1-VHR-OLR
  • 31. Mukherjee S, Mishra V (2018) A sixfold rise in concurrent day and night-time heatwaves in India under 2 °C warming. Sci Rep 8:9. https://doi.org/10.1038/s41598-018-35348-w
  • 32. Nairn J, Fawcett R (2013) Defining heatwaves: heatwave defined as a heat-impact event servicing all community and business sectors in Australia. Australia. https://www.cawcr.gov.au/technical-reports/CTR_060.pdf
  • 33. Nairn J, Ostendorf B, Bi P (2018) Performance of excess heat factor severity as a global heatwave health impact index. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph15112494
  • 34. Nairn JR, Fawcett RJB (2014) The excess heat factor: a metric for heatwave intensity and its use in classifying heatwave severity. Int J Environ Res Public Health 12:227–253. https://doi.org/10.3390/ijerph120100227
  • 35. National Disaster Management Authority (NDMA) (2019) National guidelines for preparation of action plan - prevention and management of heat wave. New Delhi, India. https://nidm.gov.in/PDF/pubs/NDMA/27.pdf
  • 36. National Disaster Management Authority (NDMA) (2017) Guidelines for Preparation of Action Plan – Prevention and Management of Heat-Wave. New Delhi, India. /pdf/guidelines/new/heatwaveguidelines2017.pdf
  • 37. Neethu C, Ramesh KV, Shafeer KB (2020) Understanding the spatio-temporal structure of recent heat waves over India. Nat Hazards 102:673–688. https://doi.org/10.1007/s11069-019-03593-5
  • 38. Nori-Sarma A, Anderson GB, Rajiva A et al (2019) The impact of heat waves on mortality in Northwest India. Environ Res 176:9. https://doi.org/10.1016/j.envres.2019.108546
  • 39. Odisha State Disaster Management Authority (OSDMA) (2020) Heat Action Plan 2020. Odisha, India. https://www.osdma.org/preparedness/one-stop-risk-management-system/heat-wave/#gsc.tab=0
  • 40. Pai DS, Nair SA, Ramanathan AN (2013) Long term climatology and trends of heat waves over India during the recent 50 years (1961–2010). Mausam 64:585–604
  • 41. Pakalidou N, Katragkou E, Poupkou A, et al (2013) Decadal Analysis of heat-wave events in thessaloniki and investigation of impacts on PM10. In: Helmis ostas G, Nastos PT (eds) Advances in Meteorology, climatology and atmospheric physics. Springer Berlin Heidelberg, pp 663–669. http://link.springer.com/https://doi.org/10.1007/978-3-642-29172-2_94
  • 42. Pattanaik D, Hatwar H (2006) Analysis and impact of delayed onset of monsoon over Northeast India during 2005. Vayu Mandal 32:3–9
  • 43. Pattanaik DR, Sahai AK (2018) Evaluation of Real-Time Extended Range Forecast (ERF) of southwest monsoon, heat wave, cold wave, cyclogenesis and northeast monsoon during 2017. New Delhi, India. https://nwp.imd.gov.in/ERF_Report_2017.pdf
  • 44. Perkins-Kirkpatrick SE, Gibson PB (2017) Changes in regional heatwave characteristics as a function of increasing global temperature. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-12520-2
  • 45. Perkins-Kirkpatrick SE, White CJ, Alexander LV et al (2016) Natural hazards in Australia: heatwaves. Clim Change 139:101–114. https://doi.org/10.1007/s10584-016-1650-0
  • 46. Perkins SE, Alexander LV (2013) On the measurement of heat waves. J Clim 26:4500–4517. https://doi.org/10.1175/JCLI-D-12-00383.1
  • 47. Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett 39:1–5. https://doi.org/10.1029/2012GL053361
  • 48. Piticar A, Croitoru AE, Ciupertea FA, Harpa GV (2018) Recent changes in heat waves and cold waves detected based on excess heat factor and excess cold factor in Romania. Int J Climatol 38:1777–1793. https://doi.org/10.1002/joc.5295
  • 49. Ratnam JV, Behera SK, Ratna SB et al (2016) Anatomy of Indian heatwaves. Sci Rep 6:11. https://doi.org/10.1038/srep24395
  • 50. Robinson PJ (2001) On the definition of a heat wave. J Appl Meteorol 40:762–775. https://doi.org/10.1175/1520-0450(2001)040%3c0762:OTDOAH%3e2.0.CO;2
  • 51. Rohini P, Rajeevan M, Srivastava AK (2016) On the variability and increasing trends of heat waves over India. Sci Rep 6:1–9. https://doi.org/10.1038/srep26153
  • 52. Roy A, Thakur PK, Pokhriyal N, et al (2018) Intercomparison of different rainfall products and validation of WRF modelled rainfall estimation in N-W Himalaya during monsoon period. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. p 5. https://doi.org/10.5194/isprs-annals-IV-5-351-2018
  • 53. Sandeep A, Prasad VS (2018) Intra-annual variability of heat wave episodes over the east coast of India. Int J Climatol 38:e617–e628. https://doi.org/10.1002/joc.5395
  • 54. Satyanarayana GC, Rao DVB (2020) Phenology of heat waves over India. Atmos Res 245:12. https://doi.org/10.1016/j.atmosres.2020.105078
  • 55. Shah D, Pandya MR, Pathak VN, et al (2016) Detection of heat wave using Kalpana-1 VHRR land surface temperature product over India. In: Khanbilvardi R, Ganju A, Rajawat AS, Chen JM (eds) SPIE Asia-Pacific Remote Sensing. SPIE, New Delhi, India, p 987727. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=https://doi.org/10.1117/12.2223655
  • 56. Shah R, Mishra V (2014) Evaluation of the reanalysis products for the monsoon season droughts in India. J Hydrometeorol 15:1575–1591. https://doi.org/10.1175/JHM-D-13-0103.1
  • 57. Singh C, Kumar SVJ (2018) Meteorological conditions for development of heat wave over Coastal Andhra Pradesh and Telangana. J Indian Geophys Union 22:349–358. http://iguonline.in/journal/viewpostsnew.php?urlVol=22&urlIsNum=03&urlVID=50
  • 58. Singh S, Mall RK, Singh N (2021) Changing spatio-temporal trends of heat wave and severe heat wave events over India: an emerging health hazard. Int J Climatol 41:1–15. https://doi.org/10.1002/joc.6814
  • 59. Srivastava AK, Shinde AS, Kundale AP (2012) Weather in India. Mausam 63:511–528. https://metnet.imd.gov.in/mausamdocs/36331.pdf
  • 60. Stachlewska IS, Zawadzka O, Engelmann R (2017) Effect of heatwave conditions on aerosol optical properties derived from satellite and ground-based remote sensing over Poland. Remote Sens 9:23. https://doi.org/10.3390/rs9111199
  • 61. Twardosz R, Kossowska-Cezak U (2015) Exceptionally hot and cold summers in Europe (1951–2010). Acta Geophys 63:275–300. https://doi.org/10.2478/s11600-014-0261-2
  • 62. Uppala SM, Kållberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. https://doi.org/10.1256/qj.04.176
  • 63. Van Oldenborgh GJ, Philip S, Kew S et al (2018) Extreme heat in India and anthropogenic climate change. Nat Hazards Earth Syst Sci 18:365–381. https://doi.org/10.5194/nhess-18-365-2018
  • 64. Varghese BM, Barnett AG, Hansen AL et al (2019) Characterising the impact of heatwaves on work-related injuries and illnesses in three Australian cities using a standard heatwave definition- Excess Heat Factor (EHF). J Expo Sci Environ Epidemiol 29:821–830. https://doi.org/10.1038/s41370-019-0138-1
  • 65. Wong TST (2015) Statistical analysis of heat waves in the State of Victoria in Australia. Aust New Zeal J Stat 57:463–480. https://doi.org/10.1111/anzs.12137
  • 66. Zhang R, Sun C, Zhu J, et al (2020) Increased European heat waves in recent decades in response to shrinking Arctic sea ice and Eurasian snow cover. npj Clim Atmos Sci 3:7. https://doi.org/https://doi.org/10.1038/s41612-020-0110-8
  • 67. Zhao A, Bollasina MA, Stevenson DS (2019) Strong influence of aerosol reductions on future heatwaves. Geophys Res Lett 46:11. https://doi.org/10.1029/2019GL082269
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c622e800-3d50-4e78-b119-6510d99d679c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.