PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automated system for measuring thermal conductivity of solid materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper proposes an automated system for measuring the thermal conductivity of solids in the range from 5 to 400 W/(m·K) with increased accuracy and reduced duration of thermal conductivity measurement. The main element of this system is a thermal conductivity measuring transducer built on a bridge diagram balanced by heat flows. Using the theory of thermal circuits, the authors built a mathematical model of the measuring transducer. To implement the automated system for measuring thermal conductivity, materials of heat-conducting elements, reference specimens, and comparative elements were selected, and their design parameters were calculated. The setting parameters of the control system for balancing the bridge measuring diagram were determined. The authors also carried out the calibration of the developed thermal conductivity measuring system using reference specimens and obtained its calibration characteristic with a correlation coefficient R-square of 0.9987.
Rocznik
Strony
179--193
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr., wzory
Twórcy
  • Lviv Polytechnic National University, Department of Automation and Computer-Integrated Technologies, 12 Bandery St., 79013, Lviv, Ukraine
  • Lviv Polytechnic National University, Department of Automation and Computer-Integrated Technologies, 12 Bandery St., 79013, Lviv, Ukraine
  • Lviv Polytechnic National University, Department of Automation and Computer-Integrated Technologies, 12 Bandery St., 79013, Lviv, Ukraine
autor
  • Lviv Polytechnic National University, Department of Automation and Computer-Integrated Technologies, 12 Bandery St., 79013, Lviv, Ukraine
  • Lviv Polytechnic National University, Department of Heat Engineering and Thermal and Nuclear Power Plants, 12 Bandery St., 79013, Lviv, Ukraine
Bibliografia
  • [1] Pusz, A., Nowosielski R., Lesz S., & Januszka A. (2011). Thermal conductivity measuring station for metallic glasses. Archives of Materials Science and Engineering, 47(2), 95-102.
  • [2] Prajapati, H., Ravoori, D., Woods, R. L., & Jain, A. (2018). Measurement of anisotropic thermal conductivity and inter-layer thermal contact resistance in polymer fused deposition modeling (FDM). Additive Manufacturing, 21, 84-90. https://doi.org/10.1016/j.addma.2018.02.019
  • [3] Zaporozhets, A., Burova, Z., Dekusha, O., Kovtun, S., Dekusha, L., & Ivanov, S. (2022). Information Measurement System for Thermal Conductivity Studying. Advanced Energy Technologies and Systems I. Studies in Systems, Decision and Control, 395, 1-19, https://doi.org/10.1007/978-3-030-85746-2_1
  • [4] Ling, Y., Han, M., Xie, J., Qui, G., Dong, G., Min, E., Zhang, P., Zeng, X., Liu, R., & Sun, R. (2023). Thermal conductivity measurement of thermoelectric films using transient Photo-Electro-Thermal technique, Measurement, 217, 1-9, https://doi.org/10.1016/j.measurement.2023.113058
  • [5] Feng, B., Tu J., Zhang Y., Fan, L., & Yu, Z. (2020). An improved steady-state method for measuring the thermal contact resistance and bulk thermal conductivity of thin-walled materials having a sub-millimeter thickness. Applied Thermal Engineering, 171, 1-11. https://doi.org/10.1016/j.applthermaleng.2020.114931
  • [6] Khorunzhii, I., Gabor, H., Job, R., Fahrner, W. R., Denisenko, A., Brunner D., & Peschek U. (2002). Steady-state thermal conductivity measurements of super-hard materials. Measurement, 32(3), 163-172. https://doi.org/10.1016/s0263-2241(02)00009-x
  • [7] Zhao, D., Qian, X., Gu, X., Jajja, S. A., & Yang, R. (2016). Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. Journal of Electronic Packaging, 138(4). https://doi.org/10.1115/1.4034605
  • [8] Adamczyk, W. P., Białecki, R. A., & Kruczek, T. (2017). Measuring thermal conductivity tensor of orthotropic solid bodies. Measurement, 101, 93-102. https://doi.org/10.1016/j.measurement.2017.01.023
  • [9] Aksöz, S., Öztürk, E., & Maraşlı, N. (2013). The measurement of thermal conductivity variation with temperature for solid materials. Measurement, 46, 161-170. https://doi.org/10.1016/j.measurement.2012.06.003
  • [10] Vasylkivskyi, I., Fedynets, V., & Yusyk, Y. (2020). Thermometric bridge circuits for measuring thermophysical properties. Energy Engineering and Control Systems, 6(7), 127-136. https://doi.org/10.23939/jeecs2020.02.127
  • [11] Leśniewski, W., Czekaj, E., Wieliczko, P., & Wawrylak, M. (2019). Novel method of thermal conductivity measurement using Stefan-Boltzmann law. Archives of Metallurgy and Materials, 311-315. https://doi.org/10.24425/amm.2019.126253
  • [12] Elkholy, A., & Kempers, R. (2022). An accurate steady-state approach for characterizing the thermal conductivity of Additively manufactured polymer composites. Case Studies in Thermal Engineering, 31, 1-13. https://doi.org/10.1016/j.csite.2022.101829
  • [13] Kumar, V., Dixit, U. S., & Zhang, J. (2019). Determination of thermal conductivity, absorptivity and heat transfer coefficient during laser-based manufacturing. Measurement, 131, 319-328 https://doi.org/10.1016/j.measurement.2018.08.072
  • [14] Szałapak, J., Kiełbasiński K., Krzemiński. J., Młożniak, A., Zwierkowska, E., Jakubowska, M., Pawłowski, R. (2015). A Method Oof Calculating Thermal Diffusivity and Conductivity for Irregularly Shaped Specimens in Laser Flash Analysis. Metrology and Measurement Systems, 22(4), 512-530.
  • [15] Chudzik, S., & Minkina, W. (2011). An idea of a measurement system for determining thermal parameters of heat insulation materials. Metrology and Measurement Systems, 17(2), 261-274. https://doi.org/10.2478/v10178-011-0008-2
  • [16] Wang, H., Ihms, D., Brandenburg, S. D., & Salvador, J. R. (2019). Thermal conductivity of thermal interface materials evaluated by a transient plane source method. Journal of Electronic Materials, 48(7), 4697-4705. https://doi.org/10.1007/s11664-019-07244-0
  • [17] Xing, L., Xie, K., Zheng, Y., Hou B., & Huan L. (2023). A thermal balance method for measuring thermal conductivity by compensation of electric cooling or heating based on thermoelectric modules. International Journal of Thermal Sciences, 189, 1-10. https://doi.org/10.1016/j.ijthermalsci.2023.108264
  • [18] Dekusha, O., Burova, Z., Kovtun, S., Dekusha, H., & Ivanov, S. (2020). Information-Measuring Technologies in the Metrological Support of Thermal Conductivity Determination by Heat Flow Meter Apparatus. Systems, Decision and Control in Energy I, 298, 217-230. https://doi.org/10.1007/978-3-030-48583-2_14
  • [19] Pistun, Y., Matiko, H., Krykh, H., & Matiko, F. (2018). Structural modelling of throttle diagrams for measuring fluid parameters. Metrology and Measurement Systems, 25(4), 659-673. https://doi.org/10.24425/mms.2018.124884
  • [20] Pistun, Y., Matiko, H., Krykh, H., & Matiko, F. (2021). Modeling throttle bridge measuring transducers of physical-mechanical parameters of Newtonian fluids. Mathematical Modeling and Computing, 8(3), 515-525. https://doi.org/10.23939/mmc2021.03.515
  • [21] Shamsuzzoha, M. (2014). Robust PID controller design for time delay processes with peak of maximum sensitivity criteria. Journal of Central South University, 21(10), 3777-3786. https://doi.org/10.1007/s11771-014-2362-0
  • [22] Kulinchenko, V. R., & Tkachenko S. Y. (2014). Heat Transfer with Mass Transfer Elements (Theory and Practice of the Process). Kyiv: Fenix. (in Ukrainian).
  • [23] International Organization for Standardization (2008). Uncertainty of measurement - Part 3: Guide to the expression of uncertainty in measurement (GUM: 1995). https://www.iso.org/standard/50461.html
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c61fd04f-9ad7-4063-8cfa-74918e4ed1e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.