
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 61, No. 3, 2013
DOI: 10.2478/bpasts-2013-0068

Effective throughput of AX.25 protocol

B. ZIELIŃSKI∗

Institute of Computer Science, Silesian University of Technology, 16 Akademicka St., 44-100 Gliwice, Poland

Abstract. AX.25 protocol belongs to the HDLC protocols family and is used, among others, as a data link layer in an amateur Packet
Radio network. The paper presents a simple analytical model developed on the basis of protocol frame exchange rules. Then, we compare
analytical results to the experimental ones achieved using various different types of TNC controllers that act as network interfaces for Packet
Radio network. In the experimental part we focus on both hardware and software properties of TNC that have influence on the effective
throughput of the network.

Key words: wireless LANs, AX.25 protocol, TNC controller, effective throughput, throughput upper limit.

1. Introduction

AX.25 protocol [1] is a member of HDLC [2] protocols fam-
ily. It was developed on the basis of LAP-B [3] in early
1980’s [4] in order to provide communication between mul-
tiple stations over a broadcast radio channel. Although the
protocol has been mainly used in the amateur Packet Radio
network, it can be used in other applications as well. Exam-
ples are telemetry and remote control networks with stations
distributed over a relatively large areas. The protocol can be
software-implemented in any microprocessor, however, some
microcontrollers are especially attractive for this task as they
are equipped with HDLC controller which supports some low-
level operations like bit sequencing and bit stuffing. Thus,
AX.25 may be successfully used in embedded applications.
It is acknowledged by the existence of TNC (Terminal Node

Controller).
TNC is an autonomous, microprocessor-based device,

used as a network interface in the amateur Packet Radio net-
work. Therefore, TNC may be viewed as an interesting im-
plementation of the protocol. TNC controllers, however, are
not all the same; in other words, they differ in terms of both
hardware and software. Thus, it is interesting how a given
protocol implementation influences on its performance.

Moreover, TNC can also be an example of a solution that
integrates wired and wireless network segments. Using TNC
controllers for experiments seems especially attractive because
it allows observe behaviour of data link layer protocol with-
out regard to higher and lower level network layers, unlike in
all modern highly integrated network interfaces. Thus, exper-
imental results can be easily compared to those obtained in
theoretical analysis.

Despite the long existence of AX.25 protocol, there are
very few widely available papers covering this subject. Prob-
ably the most commonly known are [4] and [5]. The first one
discusses a brief history of hardware, software, and protocol
development activities together with a description of amateur
packet radio operations, while the latter concentrates on the

satellite-based packet radio activities. More information can
be found via the TAPR (Tucson Amateur Packet Radio) web
site, however, there are hardly any papers regarding protocol
performance.

Recently, Ronan et al [6] have developed a simple model
which allows to estimate AX.25 protocol performance, e.g.,
frame transmission times or effective throughput, under per-
fect conditions. In this paper, we present a similar analytical
model which slightly differs from the one presented in [6]
and seems more accurate. The analysis itself is based on the
approach presented in [7] and [8] with the difference that in
our considerations the transmission rate is of a real value,
not infinitely high. The similar approach has also been shown
in [9].

The rest of the paper is organised as follows. First, we
discuss the operation of AX.25 protocol over half-duplex
and full-duplex links. Then, we introduce an analytic mod-
el that allows estimate frame transmission times and effective
throughput under perfect conditions. Next, we present TNC
controllers and their influence on network achievements. Then
we compare theoretical results to the experimental measure-
ments done in various transmission hardware and software
configurations. Finally, we discuss the factors that have influ-
ence on effective throughput of AX.25 protocol.

2. Analysis of AX.25 protocol

AX.25 protocol may operate over half-duplex or full-duplex
links. In both cases, data transmission performs in repetitive
frame exchanges. Further in the paper, we will refer such
a frame exchange to as transmission cycle.

In the case of half-duplex link, the cycle contains up to k I
(Information) frames which are commonly acknowledged up-
on proper reception by an RR (Receiver Ready) frame [1]. Pri-
or to sending the first I frame of the cycle, the sender checks
channel status using p-persistent CSMA (Carrier Sense Mul-

tiple Access) mechanism, and – if the link is sensed free –
it turns on the transmitter and waits for T103 before sending

∗e-mail: Bartlomiej.Zielinski@polsl.pl

639

Unauthenticated | 89.73.89.243
Download Date | 12/9/13 3:21 PM



B. Zieliński

data. After reception of the latest I frame, the recipient may
wait for T2 to make sure no more I frames are being sent. The
RR frame is also preceded by the T103. Transmission cycle
of AX.25 protocol operating over a half-duplex link radio is
presented in Fig. 1.

Fig. 1. Transmission cycle of AX.25 protocol using half-duplex link
for a) k = 1 and b) k = 5

In the case of full-duplex link, each I frame is acknowl-
edged separately, however, the RR frames are transmitted over
a separate frequency channel [1]. Thus, they do not alter trans-
mission time. Therefore, k parameter is not important, because
all the I frames are sent, if possible, consecutively in a single
long sequence. A fragment of such frame exchange is pre-
sented in Fig. 2.

Fig. 2. Transmission cycle of AX.25 protocol using full-duplex link

2.1. Analytical model of AX.25 protocol. Consider a net-
work that consists of two stations, communicating over a per-
fect channel. In such a case, there are no collisions or trans-
mission errors, also, the sender successfully wins CSMA con-
tention in the first attempt. Bearing in mind the explanations
given in [8],

TCS =
256T102

2(p + 1)
, (1)

where T102 – CSMA slot time [s], p – persistence parameter
(transmission probability in a given slot equals to (p+1)/256).

Assuming constant I frame length, duration of the trans-
mission cycle for the half-duplex link (see Fig. 1) may be
expressed as follows:

Tp = TCS + 2T103 + kTI + T2 + TRR, (2)

where TI and TRR – transmission times of I and RR frames,
respectively [s], while k – window size (or maximum number
of commonly acknowledged frames). Bearing in mind their
formats [1],

TI =
63

62

160 + 8N1

Rwl

, (3)

and

TRR =
63

62

160

Rwl

, (4)

where Rwl – wireless link transmission rate [bps], N1 – max-
imum capacity of the data field in an I frame [bytes]. Control
(e.g., RR) frame length equals to 20 bytes, while I frame is
N1 bytes longer, hence the value of 160 [bits] in (3) and (4).

The factor 63/62 results from bit stuffing [10] required for
protocol transparency.

The model presented above differs from Ronan’s one [6]
in two points. First, Ronan takes into account protocol trans-
parency as a factor of 8.004 applied to only the data field of
the I frame. In our model, the factor of 63/62 applies to every
frame entirely, including address and control fields, as sug-
gested by [10]. The second difference is that Ronan’s model
accounts the Ttxtail parameter which is similar to T103 ex-
cept it occurs after the frame. We decided not to consider this
parameter, because it seems not defined by the AX.25 pro-
tocol specification and we found its default value equal to 0
in all AX.25 implementations we knew. Nevertheless, inclu-
sion of Ttxtail into our model, if necessary, is possible and
straightforward.

Some comment on T2 delay is necessary. Depending on
the AX.25 protocol implementation details, the sender may
request immediate acknowledge by setting of P/F bit in the
control field of the latest frame in a window. In such a case,
the receiver knows there will be no more frames and responds
with RR immediately, not wasting T2 for unnecessary waiting
for more frames. AX.25 protocol specification defines a re-
sponse to the I frame with P/F bit set, however, it does not
require that the latest I frame in a window is marked. Thus,
protocol behaviour remains implementation-specific.

In the case of full-duplex link, RR frame is transmitted
during the transmission of the I frame that follows the I frame
being acknowledged. Thus, we may assume that Tp = TI , es-
pecially if the number of transmission cycles is sufficiently
large.

2.2. TNC controllers. When TNC controllers are present in
a network, the transmission proceeds in three stages, as ex-
plained in Fig. 3. The delays between begins and ends of
the stages result from data buffering in TNC memory and
processing of AX.25 protocol frames.

Fig. 3. Transmission stages when using TNC controllers

TNC controller collects the characters received from the
serial link. Once there are at least N1 characters collected,
it forms an I frame of AX.25 protocol and sends it over the

640 Bull. Pol. Ac.: Tech. 61(3) 2013

Unauthenticated | 89.73.89.243
Download Date | 12/9/13 3:21 PM



Effective throughput of AX.25 protocol

wireless link. During this transmission, it continues collecting
characters until the buffer is full, and it can prepare consec-
utive I frames and place them in a queue to be transmitted
later. Obviously, TNC may send up to k frames in a trans-
mission cycle. At the receiver side, TNC acknowledges re-
ceived frames and sends the content of their data field to the
serial link. Hence, the presence of TNC controllers causes
additional delays at the beginning and the end of transmis-
sion.

Assuming that the serial link effective throughput is higher
than that of the wireless link, TNC controller extends trans-
mission process by the transmission time of 2N1 characters
over the serial link:

TTNC = 2
10N1

Rw

, (5)

where Rw – serial link transmission rate [bps].
When the middle transmission stage lasts long enough,

i.e., when transmitted information is large, or when wireless
link effective throughput is much lower than that of the serial
port, TTNC is negligible.

Having calculated TTNC and Tp, we can calculate theoret-
ical effective throughput, dividing capacity of data transmitted
during the transmission cycle by its duration.

3. Experimental results

Comparison of analytical and experimental results is one of
possible ways to verify the model accuracy. Thus, we verified
the model presented in the previous section in an experimental
Packet Radio network with several types of TNC controllers.
The set of controllers is limited to the models available on
the market. Nevertheless, it covers many solutions that differ
from each other in hardware and software.

On the other hand, theoretical results achieved using pre-
sented formulas – assuming they are correct – represent possi-
ble achievements of a “perfect” TNC controller. Thus, we can
use them as a reference point in an analysis of experimental
results.

It must be noted, however, that the theoretical analysis
presented in the previous section assumes perfect transmis-
sion conditions. Thus, in order to make the analytical and ex-
perimental results comparable, we had to provide transmission
conditions in the network as perfect as possible. Therefore, we
decided to make a wired connection between TNC controllers
instead of a radio link. It was necessary to avoid possible inter-
ferences resulting in transmission errors and retransmissions
that would visibly affect the measurement results. This ap-
proach allows find out how protocol implementation details
influence on network achievements. Besides, using no radio,
we could use wider range of AX.25 protocol parameters, e.g.,
Rwl or T103.

As aforementioned, TNC is a microprocessor-based de-
vice. As such, it may be built using various types of mi-
croprocessors, of various processing power. On the other
hand, in TNC controller, AX.25 protocol is usually software-
implemented, with the exception of lowest-level protocol func-
tions – e.g., frame delimiters and bit stuffing – that are typ-

ically supported by a HDLC controller. Nevertheless, details
of software protocol implementation may also influence on
network performance. Therefore, we decided to check both
hardware and software influence on AX.25 protocol effective
throughput.

3.1. Hardware influence on effective throughput. We test-
ed AX.25 protocol effective throughput in an experimental
network that consisted of two PC-class computers and two
TNC controllers. Receiving and transmitting TNC were iden-
tical. Network configuration was identical to shown in Fig.
3. Some construction parameters of TNC controllers used for
tests are collected in Tables 1 and 2.

Table 1
Microprocessors in TNC controllers

Controller Vendor Processor
fclk

[MHz]

TNC2 – Z80 2.4576

TNC2D Muel Z80 4.9152

TNC2H Symek Z80 9.8304

Spirit-2 Std. Paccomm Z80 9.8304

Spirit-2 H.S. Paccomm Z80 19.6608

KPC-9612+ Kantronics 68HC11 16.0000

PK-96 Timevawe Z180 12.2880

KAM-XL Kantronics 68HC902 9.8304

DSP-232 Timevawe 68340 3.6864

PTC-11 SCS 68360 25.0000

TNC3S Symek 68302 14.7456

TNC31S Symek 68302 14.7456

TNC4e HBTron 68EN302 19.6608

TNC7multi NtG LPC2106 58.9824

DLC7 NtG S3C4530 49.1520

Table 2
Memory and transmission rates in TNC controllers

Controller
ROM
[KB]

RAM
[KB]

Rw

[kbps]
Rwl

[kbps]

TNC2 32 16-32 9.6 1.2

TNC2D 2×32 32 19.2 1.2

TNC2H 2×32 32 38.4 9.6

Spirit-2 Std. 2×32 32 57.6 57.6

Spirit-2 H.S. 2×32 32 57.6 57.6

KPC-9612+ 128 128-512 38.4 38.4

PK-96 64 128 38.4 38.4

KAM-XL 512 512 38.4 9.6

DSP-232 128 256 19.2 9.6

PTC-11 256-512 512-2048 115.2 19.2

TNC3S 256-1024 64-2048 115.2 614.4

TNC31S 128-512 128-512 115.2 614.4

TNC4e 1024 4096 115.2 1228.8

TNC7multi 128 64 115.2 115.2

DLC7 4096 32768 115.2 1536.0

Measured throughput. Measurements results of effective
transmission speed for few selected TNC controllers, oper-
ating at various window sizes (k) and maximum I-frame data

Bull. Pol. Ac.: Tech. 61(3) 2013 641

Unauthenticated | 89.73.89.243
Download Date | 12/9/13 3:21 PM



B. Zieliński

field capacity (N1 = 256 bytes) are shown in Fig. 4. Transmis-
sion rates were set up to: Rw = 19.2 kbps, Rwl = 1.2 kbps.
For comparison purposes, the graph contains also the curves
showing theoretical achievements of AX.25 protocol obtained
using (2); namely, AX.25 imm corresponds to protocol im-
plementation with immediate RR frame generation, while
AX.25 T2 – with awaiting for T2 time prior to sending RR
frame.

On the graph, we can see that the results do not dif-
fer very much. Some controllers (e.g., Z80-based TNC2 and
TNC2D) can’t make use of window size 4 and above – in-
creasing this parameter does not practically increase transmis-
sion speed. KPC-9612+ behaves similarly. Faster TNC3 and
TNC7 controllers, unexpectedly, behave worse than the others
for k < 7. A more detailed analysis conducted in monitoring
mode shows that these controllers do not request immediate
acknowledgement by setting P/F bit in AX.25 protocol control
field. Thus, the recipient waits for T2 time for possible consec-
utive frames and sends the acknowledgement only afterwards.
Nevertheless, when k = 7, TNC3, TNC7 and DLC7 achieve
higher throughput than other controllers, close to the theoret-
ical values. It is possible, because, for a maximum window
size allowed by protocol definition, the recipient does not wait
for the T2 time before sending the RR acknowledge.

Fig. 4. Effective throughput using 1.2 kbps radio link

Results of similar measurements, conducted for Rwl =
9.6 kbps, are presented in Fig. 5. For comparison, similarly
to Fig. 3., the graph also presents two curves showing theo-
retical capabilities of AX.25 protocol. In this case, difference
between various TNC controllers is much more visible than
for lower transmission rates. Depending on controller type,
maximum effective throughput varies from about 1.5 kbps
(TNC2D) to almost 5.5 kbps (DLC7), while theoretical max-
imum is about 5.9 kbps. The difference between results for
k = 6 and k = 7 are also visible for TNC3, TNC7 and DLC7
controllers.

Figure 6 presents measurement results for Rwl =
38.4 kbps radio link. It is the highest transmission rate that
allows for comparison of most of TNC controllers – only

multimode and Z80-based (except Spirit-2) controllers do not
provide this rate. It is also worth noting that the difference
between Spirit-2, KPC-9612+ and PK-961 is not large. Never-
theless, they all limit the effective throughput to about 5 kbps,
while TNC3 allows achieve almost 8 kbps, TNC7 and DLC7
– 10 and 11 kbps, respectively. It can be easily seen that the
processing power of the microprocessor used in TNC is es-
sential for the effective throughput. Its significance grows up
with increasing transmission rate.

Fig. 5. Effective throughput using 9.6 kbps radio link

Fig. 6. Effective throughput using 38.4 kbps radio link

Real window size. In order to determine the exact reason of
low efficiency of Z80-based TNC controllers, we transmitted
a relatively large file (64 KB), for various data field capacities
in the I frames (N1) and window size (k) set to 7. All trans-
mitted frames were logged by the receiving TNC working in
the monitor mode. Basing on such a transmission report, we
determined real window sizes that occurred during the trans-
mission. Histograms, presenting distribution of real window
sizes for few selected controllers and transmission rates, are
presented in Figs. 7–9.

1PK-96 results are not shown because at 38.4 kbps it works unstable and only few measurements were successful; this rate can be set up in software, but
communication proceeds with frequent errors – probably analogue filters are set for lower rates and do not allow for reliable transmission.

642 Bull. Pol. Ac.: Tech. 61(3) 2013

Unauthenticated | 89.73.89.243
Download Date | 12/9/13 3:21 PM



Effective throughput of AX.25 protocol

Fig. 7. Distribution of real window size for TNC2D controller
at 1.2 kbps

Fig. 8. Distribution of real window size for TNC2H controller
at 9.6 kbps

Fig. 9. Distribution of real window size for KPC-9612+ controller
at 9.6 kbps

Presented results show that Z80-based TNC controllers
are not able to utilize maximum window size, practically re-
gardless of radio link transmission rate. Nevertheless, with de-
creasing I frame length, real window sizes increase. We may
therefore assume that the controller is not able to process suf-
ficiently large amount of data in a sufficiently short time. Pos-
sible reasons of such behaviour are: too low processing power
of the microprocessor, low efficiency of control software (lack
of optimization), too low capacity of memory used as trans-

mit and receive buffers or special limitations introduced in
software.

TNC controllers based on microprocessors others than
Z80, e.g., KPC-9612+, are much more capable of full util-
isation of maximum window size. We may observe efficiency
decrease for N1 ≥100 bytes, however, even for maximum-
length I frames (N1 = 256 bytes), window size of k = 7
dominates. Even better performance is shown by TNC3 and
TNC7 controllers – efficiency decrease caused by (not full)
utilisation of maximum window size may be observed only
for Rwl ≥150 kbps.

Comparing measured effective throughput with real win-
dow size, we can say that ability to utilise maximum window
size is essential property of TNC. No matter whether real win-
dow size is limited by TNC properties or k parameter value,
decreasing of it always increases protocol overhead, thus re-
ducing effective throughput.

3.2. Software influence on effective throughput. Results
presented in the previous section clearly show that the mi-
croprocessor type and its processing power has great influ-
ence on effective throughput. Indeed, even for relatively low
transmission rates, TNC controllers containing slow micro-
processors present much poorer performance than estimated
by the theoretical model. However, during the tests, we ob-
served some software-dependent protocol implementation is-
sues that might affect measured effective throughput. Thus,
we decided to compare various TNC control programs using
a common hardware platform.

For Z-80-based controllers, there are multiple software
types and versions available which allows compare different
AX.25 protocol implementations using a common hardware
platform. This, in turn, allows achieve clearer results, not dis-
torted by the influence of the TNC hardware.

The experimental test were conducted using four types of
Zilog Z80-based TNC controllers running at various clock
frequencies (fclk). They also differ in terms of maximum
transmission rates on wired and wireless links (Rw and Rwl,
respectively). The availability of particular wireless link trans-
mission rates is further limited by capabilities of built-in
modems. Selected construction parameters of the TNC con-
trollers are collected in Tables 1 and 2.

During the tests, the controllers ran under the control of
several types of software, namely:

• MFJ (initials of the author, Martin F. Jue) software (1.1.4,
1.1.9 and Muel versions), as delivered with TNC2, TNC2D
and similar TNC2H controllers;

• TF (The Firmware) software (2.1d, 2.3b and 2.7b versions,
all in 10 connections variant), as delivered with TNC2D
and similar TNC2H controllers;

• Spirit-2 TNC software (5.0 version), as delivered with
Spirit-2 controllers.

As all the aforementioned controllers are hardware compati-
ble with each other, the software can be easily interchanged
by EPROM memory replacement.

Bull. Pol. Ac.: Tech. 61(3) 2013 643

Unauthenticated | 89.73.89.243
Download Date | 12/9/13 3:21 PM



B. Zieliński

The tested controllers acted as transmitters or receivers.
In both cases, tested controller was connected in pair with
either TNC3 or TNC7 controller. Both TNC3 and TNC7 are
much faster than any Z80-based TNC (see Tables 1 and 2 and
the results presented in Subsec. 3.1), thus, they should not
significantly decrease measured effective throughput.

During the tests, an 8 KB file was transmitted. The size
was chosen as a compromise between transmission time and
measurement accuracy. AX.25 protocol was configured for
maximum theoretical throughput (window size k = 7, data
field capacity N1 = 256 bytes). Transmission time was mea-
sured from the transmission start at the sender side (TCT in
Fig. 3) to the transmission end at the recipient (Trc in Fig. 3).
Although it takes into account transmission between computer
and TNC, the influence of these times is negligible when total
transmission time is sufficiently long [11]. Because of trans-
mission rate ranges of TNC built-in modems (see Table 2),
tests for different transmission rates had to be performed sep-
arately using different controllers. Thus, two different con-
figurations could be set up. In the “slower” one, controllers
running at about fclk = 2.5 MHz or 4.9 MHz were used and
configured for Rwl = 1.2 kbps. In turn, in the “faster” one,
controllers running at about fclk = 10 MHz or 20 MHz were
used and configured for Rwl = 9.6 kbps.

Results for “slower” configuration. In the “slower” config-
uration, TNC2 and TNC2D controllers were configured for
Rwl = 1.2 kbps and Rw = 9.6 kbps. Measurements results
for TNC’s acting as a sender and a recipient are present-
ed in Fig. 10 and Fig. 11, respectively. For comparison, the
graphs contain also curves representing theoretical throughput
of AX.25 protocol with immediate acknowledge generation
(AX.25) or with T2 delay (AX.25 T2), calculated according
to [12].

In the case of tested TNC acting as a sender, one can see
clearly that the effective throughput depends on the software
used. All tested versions of MFJ and Spirit-2 software are
very close to each other (to preserve clarity, only Spirit curve
is presented on the graph). Effective throughput grows rapidly
when window size (k) increases from 1 to 4. However, fur-
ther increasing of k does not bring significant improvement
of throughput. Probably there are some limitations in the soft-
ware, e.g., buffer capacity, that do not allow to transmit, in
average, more than 4 maximum-length I frames. Maximum
achievable effective transmission speed varies from about 750
to 800 bps for slower TNC and from 800 to 900 bps for the
faster one. Both results are visibly below theoretical through-
put of AX.25 protocol of about 1000 bps. TF software behaves
completely different. Version 2.1 seems the most ineffective
in the role of the sender and the achievable throughput is in-
dependent of window size. Similar is version 2.3, however,
only when run on the slower TNC2; on the faster one, it be-
haves similarly to version 2.7. Thus, one might conclude that
it requires more processing power than TNC2 can offer. Ver-
sion 2.7 is the best one regardless of TNC speed. However,
when run on the faster TNC2D, when k = 7, it achieves the
same results as MFJ software.

Fig. 10. Effective throughput for TNC2 (2.5 MHz) and TNC2D
(4.9 MHz) as a sender

Fig. 11. Effective throughput for TNC2 (2.5 MHz) and TNC2D
(4.9 MHz) as a recipient

When the tested TNC acts as a recipient, the difference
between the fastest and the slowest software is much smaller.
It can be found out, however, that the fastest reception pro-
ceeds under control of Spirit software, especially when run
on a faster TNC2D. The slowest reception is for TF 2.7, re-
gardless of microprocessor clock. It is also worth noting that
these results are much closer to the theoretical throughput and
vary from 900 to 1000 bps regardless of TNC clock frequen-
cy. Possible reason of this behaviour is such that much faster
TNC3 or TNC7 acts as a sender. It allows conclude that the
sender processing power is much more important from the
point of view of protocol efficiency than that of the recipient.
Nevertheless, recipient software has still some influence on
effective throughput.

Results for “faster” configuration. In the “faster” config-
uration, Spirit-2 in Standard and High Speed versions were
configured for Rwl = 9.6 kbps and Rw = 57.6 kbps. Mea-
surements results for TNC’s acting as a sender and a recipient
are presented in Figs. 12 and 13, respectively. The graphs con-
tain also curves representing theoretical throughput of AX.25
protocol with immediate acknowledge generation (AX.25) or
with T2 delay (AX.25 T2).

644 Bull. Pol. Ac.: Tech. 61(3) 2013

Unauthenticated | 89.73.89.243
Download Date | 12/9/13 3:21 PM



Effective throughput of AX.25 protocol

If the tested TNC acts as a sender, the results are somewhat
similar to those obtained in the slower configuration. Again,
the slowest sender is TF 2.1, regardless of microprocessor
clock frequency. TF 2.3 is a little better. Both versions work
faster at the faster microprocessor. However, they are both
slower than Spirit and MFJ software in any version. These
programs achieve similar efficiency regardless of clock fre-
quency. This may lead to the conclusion that the transmission
procedures are well optimised, however, some limitations ex-
ist in the software that does not allow reach higher efficiency
when microprocessor’s processing power would allow for it. It
is especially visible for k ≥ 4, where – similarly to the slower
configuration – increase of window size does not bring visible
improvement in effective throughput. TF 2.7 achieves speeds
similar to MFJ and Spirit. Nevertheless, when microproces-
sor works with faster clock (20 MHz), it outperforms all other
software types, although not significantly. Maximum effective
throughput measured in this test is about 4000 bps, while the-
oretically it could be as high as about 6000 bps. Thus, one
can conclude that Z80-based TNC controllers are too slow to
obtain performance that is high enough to use 9600 bps radio
link efficiently, or the software – especially TF 2.7 – has not
been sufficiently optimised.

Fig. 12. Effective throughput for Spirit Standard (10 MHz) and High
Speed (20 MHz) as a sender

Fig. 13. Effective throughput for Spirit Standard (10 MHz) and High
Speed (20 MHz) as a recipient

If the tested TNC acts as a recipient, the results are also
similar to the respective ones obtained in the slower config-
uration. The difference between the slowest and the fastest
recipient is not very big – effective throughput ranges from
about 4100 bps to about 5200 bps. Both results are visibly
below theoretical estimation, which differs from the “slower”
configuration where some measurement results were compa-
rable to the calculated limit. It may lead to the conclusion
that the processing power of a Z80-based TNC controller is
sufficient for Rwl = 1.2 kbps, but not for Rwl = 9.6 kbps
or more. The fastest recipients are TF 2.1 and Spirit, both
at 20 MHz clock frequency. What seems surprising, TF 2.7
performs better for slower clock than for the faster one.

Real window size. In order to find out a more detailed reason
of difference in effective throughput achieved for various soft-
ware types and versions, transmission reports were collected
in a monitoring mode that is available in all TNC control
software. The monitor output contains not only user data, but
also decoded frame headers with addresses and decoded con-
trol fields. Browsing such report allows analyse real frame
exchange process. From the data gathered this way, we can
obtain real window size distribution. The distribution of real
window size for both “slower” and “faster” configurations are
presented in Figs. 14 and 15, respectively.

Fig. 14. Real window size for “slower” configurations

Fig. 15. Real window size for “faster” configurations

Bull. Pol. Ac.: Tech. 61(3) 2013 645

Unauthenticated | 89.73.89.243
Download Date | 12/9/13 3:21 PM



B. Zieliński

In the presented histograms, we can easily see that TF
software behaves completely different than MFJ and Spirit
ones. For “slower” configuration and MFJ or Spirit software,
real window size oscillates around a value of 4. During trans-
mission, depending on version, there is either always window
size of 4, or 3 and 5 interleaving. For faster configuration,
dominance of k = 4 is not so obvious. Indeed, smaller win-
dow sizes occur during transmission.

TF software behaviour, in turn, depends more on clock
frequency. If it is too low – say, 2.5 MHz – TF 2.1 and 2.3
use always window size of 1 or 2. The situation gets better for
TF 2.3 when clock is at least 4.9 MHz – the real window size
grows to about 6 if Rwl=1.2 kbps and 3 if Rwl = 9.6 kbps.
Nevertheless, TF 2.7 is even more effective and can use win-
dow size of 7, but only if the microprocessor has enough
processing power. For example, if Rwl = 1.2 kbps, TF 2.7
achieves average real window size of about 6 when run at
2.5 MHz microprocessor, and almost 7 at 4.9 MHz one. Sim-
ilarly, if Rwl = 9.6 kbps, it obtains about 4 at 10 MHz
and almost 7 at 20 MHz. Unfortunately, it does not result
in improvement of effective throughput, probably because the
TF 2.7 software needs more time to process required amount
of information than, for example, MFJ or Spirit ones.

Surprisingly, when TF 2.1 or 2.3 operate on 10 or 20 MHz
Z80, they use larger window size despite higher transmission
rates. TF 2.7, running at 20 MHz, can still use window size
of 7. However, this ability doesn’t make it much more effective
than MFJ or Spirit software, which can’t use window larger,
in average, than 4 maximum-length frames. This observation
allows conclude that TF 2.7 capabilities are achieved at a cost
of decreased frame processing speed.

4. Summary and conclusions

During described tests it has been shown that effective
throughput achieved in a given configuration depends on not
only TNC hardware – particularly microprocessor type and its
clock frequency – but also properties of software that controls
TNC operation. The following factors, depending exclusively
on software, may have influence over circuit performance:

• full utilisation of window size for every data field capacity
of a frame,

• sufficiently high processing speed of AX.25 protocol
frames,

• immediate generation of acknowledgement of error-free in-
formation frame reception,

• immediate acknowledgement request by setting of P/F bit
in the latest information frame within a window.

Inability of full utilisation of window size is especially annoy-
ing in Z80-based TNC controllers, practically regardless of its
clock frequency and memory capacity. However, type and ver-
sion of software used in TNC has some influence upon its per-
formance. For example, versions supporting TAPR command
set rarely utilise window size – the controller can not transmit
more than 5 maximum-length I frames consecutively. A little
better is TF software, which, especially in most up-to-date 2.7

version, can send up to 7 maximum-length I frames consec-
utively. It seems however, that such capability is achieved at
a cost of longer frame preparation for transmission.

Controllers, supporting TAPR command set, but based on
other microprocessor types, can utilise window size much bet-
ter, even at higher transmission rates. Unfortunately, there is
no alternative software for these controllers; it is thus hard to
say if this capability results from higher processing power of
a microprocessor, or better software quality in terms of both
protocol implementation and code optimisation.

Additional factor that influences the effective transmis-
sion speed is the way the recipient treats the window size
less than 7. In general, if the sender does not mark the latest
frame within a window with P/F bit, TF software sends the
acknowledgement only after T2 time elapses, while MFJ –
immediately; however, some implementations based on MFJ
software, e.g., in TimeWave and Kantronics controllers, be-
have similarly to TF. In some versions of TF software, T2 time
may be set manually to any value, in others – e.g., TNC3 – it
is calculated automatically and cannot be changed. This para-
meter can also be set up in some versions of TAPR software.

Some software versions – e.g., in Kantronics controllers
– at the beginning of transmission, initially limit window
size, and later gradually increase it up to maximum value set.
Such behaviour may be reasonable, because it allows recog-
nise capabilities of a receiving station. However, when the
transmitted information is relatively short, the transmission
efficiency decreases.

Effective throughput is not the only network quality mea-
sure. In some applications, e.g., control and time-bounded
ones, transmission delay is more important than throughput.
Currently we investigate this issue.

Presented results are achieved for perfect transmission
conditions, because our main goal was to show implemen-
tation influence on effective throughput. In real conditions,
possible transmission errors could make the experimental re-
sults less clear and thus more difficult to analyze. Thus, it
could lead to misinterpretation of the results and false con-
clusions, so we decided such analysis was beyond the scope of
this paper. Nevertheless, such results could also be interesting,
especially in comparison with the perfect-conditions case.

The presented results are limited to the AX.25 protocol
implementations that are commercially available, which lim-
its set of tested microprocessors and software versions. Thus,
we plan to make our own experimental implementations. We
hope that results presented in this paper and experience with
different protocol operation in various software implementa-
tions may help achieve better results.

REFERENCES

[1] W.A. Beech, D.E. Nielsen, and J. Taylor, AX.25 Link Access

Protocol for Amateur Packet Radio, Tucson Amateur Packet
Radio Corporation, Tucson, 1997.

[2] ISO/IEC 13239:2002: Information technology – Telecommuni-

cations And Information Exchange Between Systems – High-

Level Data Link Control (HDLC) Procedures, Third Edition,
ISO, Geneva, 2002.

646 Bull. Pol. Ac.: Tech. 61(3) 2013

Unauthenticated | 89.73.89.243
Download Date | 12/9/13 3:21 PM



Effective throughput of AX.25 protocol

[3] ISO/IEC 7776:1995: Information Technology – Telecommuni-

cations and Information Exchange Between Systems – High-

Level Data Link Control Procedures – Description of the X.25

LAPB-Compatible DTE Data Link Procedures, Second Edi-

tion, ISO, Geneva, 1995.
[4] P.R. Karn, H.E. Price, and R.J. Diersing, “Packet radio in the

amateur service”, IEEE J. Select. Areas Commun. 3 (3), 431–
439 (1985).

[5] R. Diersing and J. Ward, “Packet radio in the amateur satel-
lite service”, IEEE J. Select. Areas Commun. 7 (2), 226–234
(1989).

[6] J. Ronan, K. Walsh, and D. Long, “Evaluation of a DTN con-
vergence layer for the AX.25 network protocol”, Proc. Second

Int. Workshop on Mobile Opportunistic Networking MobiOpp

10 ACM, 72–78 (2010).

[7] Y. Xiao and J. Rosdahl, “Throughput and delay limits of IEEE
802.11”, IEEE Commun. Lett. 6 (8), 355–357 (2002).

[8] D. Qiao, S. Choi, and K.G. Shin, “Goodput analysis and link
adaptation for IEEE 802.11a wireless LANs”, IEEE Trans. Mo-

bile Comput. 1 (4), 278–292 (2002).
[9] B. Zieliński, “Efficiency analysis of IEEE 802.11 protocol with

block acknowledge and frame aggregation”, Bull. Pol. Ac.:

Tech. 59 (2), 235–243 (2011).
[10] J.S. Ma, “On the impact of HDLC zero insertion and deletion

on link utilization and reliability”, IEEE Trans. Commun. 30
(2), 375–381 (1982).

[11] B. Zieliński, “An analytical model of TNC controller”, Theo-

retical and Applied Informatics 21 (1), 7–22 (2009).
[12] B. Zieliński, “Efficiency estimation of AX.25 protocol”, The-

oretical and Applied Informatics 20 (3), 199–214 (2008).

Bull. Pol. Ac.: Tech. 61(3) 2013 647

Unauthenticated | 89.73.89.243
Download Date | 12/9/13 3:21 PM


