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diagnostic rules, fuzzy sets,
the Dempster-Shafer theory

Ewa STRASZECKA1

THE BASIC PROBABILITY ASSIGNMENT AS A
MEASURE OF DIAGNOSTIC RULES SIGNIFICANCE

Diagnostic rules are usually IF-THEN rules, but they should satisfy specific requirements of a diagnosis.
Thus, not always the classical methods of rules determination are applicable. In the present paper it is suggested
to find out the set of rules by an elimination of superfluous rules from the maximal rule set or adding rules that
improve inference to the minimal set of rules. It is shown that the basic probability assignment determined in the
Dempster-Shafer theory of evidence can be used as a measure indicating symptoms that are the most significant
for a diagnosis and should create rules. A set of IF-THEN rules with fuzzy premises and crisp conclusions can
be built in this way. The proposed method is illustrated by determining rules allowing for diagnostic inference
for a database of thyroid gland diseases.

1. DIAGNOSTIC RULES

1.1. GENERAL FORM OF THE RULE AND IMPRECISION OF ITS PREMISE

Diagnostic rules usually have an abductive form: IF symptoms THEN disease [3]. They describe
a heuristic mapping between symptoms and diagnostic hypotheses. Yet, the rules are never certain
and their abductive form involves difficulties in application of a certainty measure as a factor of the
rule significance. The classical probability is difficult to handle as it requires values of conditional
probabilities of all combinations for symptoms of a given disease. Only under this condition the
probability of a disease given symptoms can be calculated from Bayes formula [4]. Obviously, the
calculation is easy for one rule, but quite difficult for their collection that makes a knowledge base of
a diagnosis support system.
A fuzzy formulation of a premise, for instance ’high cholesterol level’ or ’low heart rate’, can indicate
the use of a fuzzy rule for the diagnostic rule representation. Yet, the rule is not entirely fuzzy, since its
conclusion is crisp (disease). Fuzzyfication of the conclusion is awkward and requires an introduction
of an additional variable that resembles a disease risk. Still, the risk domain must be assumed without
any clear indications concerning its scale or units.
These reasons made the author of this paper to search for another solution for a diagnostic rule
representation and for a diagnostic inference. It was found in the framework of the Dempster-Shafer
theory and the fuzzy set theory. The rule representation is proposed as [6]:

IF X1 is X l
1, and, . . . , and Xn is X l

n THEN diagnosis is Dl, (1)

where Xi is a linguistic variable (e.g. a laboratory test), X l
i – an i-th linguistic value (e.g. ’high’) used

in a symptom description in the Dl diagnosis. The X l
j can be represented by a membership function.
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Since the membership function can be particularly a characteristic function or a singleton, the formula
(1) represents a variety of diagnostic rules.
Thus, imprecision of a symptom in the diagnostic rule is expressed by a fuzzy set, but certainty of the
rule remains undetermined. The latter can be represented by the value of the basic probability defined
in the Dempster-Shafer theory of evidence.

1.2. UNCERTAINTY OF THE RULE

The premise of the rule can be considered as a focal element in the Dempster-Shafer theory of
evidence (DST). Focal elements in the DST are predicates to which a probability value is assigned.
Thus, they can represent symptoms. The DST can be extended for fuzzy focal elements [5]. In the DST
probability is defined in a manner that differs from the classical definition. It is the basic probability
assignment (BPA) denoted by m [2]:

m(f) = 0,
∑
s∈S

m(s) = 1. (2)

where f is the false predicate and S is the set of focal elements, in our case symptoms s. Thus, s
resembles the predicate ’Xi is X l

i’ or ’Xi is X l
i and ... and Xn is X l

n’. In the latter case the focal
element will be called complex.
In the current work a method that join the Dempster-Shafer and fuzzy set theories with some aspects of
rule based system is proposed. Therefore, it is necessary to explain the accurate meaning of concepts
that are used. The rule premise consists of conditions. Linguistic variables that are used in the conditions
are represented by fuzzy sets. Each rule condition is a symptom. If rules that concern one diagnosis
are gathered in a separate collection, we may consider only their premises during inference. Only when
reasoning is performed, the conclusion is assigned with some certainty. The set of premises is the set
of focal elements. The basic probability values are assigned to focal elements. After reasoning for all
diagnoses, their certainty is compared and the final diagnosis is chosen. Thus, the diagnoses are often
called diagnostic hypotheses in the present work.
In (2) the dependence of focal elements is not considered, hence calculations of the BPA values are easier
in comparison to classical probability. Moreover, the same symptoms may be included in different focal
elements: for instance a laboratory test is mentioned in the premise of one rule, but also in conjunction
with another test in another rule. The BPA value stands for the certainty of the rule. It can be calculated as
a normalized frequency of occurrence of rule premises for the chosen diagnostic hypothesis. However,
rule premises are fuzzy, so a presence of a symptom, i.e. the focal element, must be considered in
imprecise categories. Thus, a threshold ηBPA is assumed and focal elements which memberships are
greater than the threshold are presumed to be present. The BPA for fuzzy focal elements are calculated
as [6]:

mD(f) = 0,
∑

si∈S,i=1,...,n
ηi>ηBPA

mD(si) = 1. (3)

where n is the number of focal elements for the D diagnostic hypothesis and si ∩ sj 6= ∅ is possible.
The ηi level of symptom’s precision is determined as the conjunction of membership functions of the
premise condition (µi(x)) and evidence, i.e. patient’s observation. If the observation is a measurement
x∗i , the latter membership is the δ∗xi singleton and the level is calculated as [7]:

ηi = sup
x∈X

[
µi(x) ∧ δ∗xi

]
= µi (x

∗
i ) . (4)

The (4) formula is here given for a single focal element, for complex focal elements it is the minimal
value of levels of included symptoms [7].
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2. CERTAINTY OF DIAGNOSIS

The level of symptom’s precision is used not only for BPA, but also for the belief (Bel) and plausibility
(Pl) calculation [1]. These measures are in the classical Dempster-Shafer theory the measures of certainty
of an evidence that is characterized by the [Bel(D), P l(D)] interval. The interval becomes a single value
if focal elements are separate:∀i,jsi ∩ sj = ∅. In such a case Bel(D) = Pl(D) = P (D), where P (D)
is the (classical) probability of the diagnosis. Still, this situation does not concern our problem, hence
the measures for fuzzy focal elements must be defined as [6]:

Bel(D, ηT ) =
∑
si∈S
ηi>ηT

m(si), (5)

Pl(D, ηT ) =
∑
si∈S
θi>ηT

m(si), (6)

where D stands for the diagnosis and ηT is the precision threshold of reasoning. In (6) the θi precision
level is used which is calculated as maximum value of precision of symptoms for the complex focal
element [7]. The ηT threshold does not need to depend on ηBPA, but it is reasonable and confirmed by
the experiments [6] that ηT ≥ ηBPA.
The medical diagnosis is always very cautious, thus the Bel measure seems to be more appropriate for
its estimation. In the present method this measure is used for differential diagnosis. Values of the Bel
measure are calculated for all diagnostic hypotheses and the one with the greatest value wins. If the
maximal value is not unique, the final conclusion cannot be driven.

3. DATABASE

The method presented in the previous two sections is tested for the database [8]. The database
concerns thyroid diseases and includes data for 3 diagnoses: euthyroidism (the state of normal level of
thyroid hormones), hyperthyroidism and hypothyroidism. In the present paper the diagnoses are denoted
as D1, D2 and D3, respectively. The diagnosis is the first element in the data sample, thus parameters
that follow it are here denoted as variables v2–v6. The number of cases for the three diagnoses (in the
corresponding order) are 150, 35 and 30. During experiments the whole database is the train and the
test set as in the current work a correctness of approach rather than an efficiency of solution is tested.

4. DETERMINATION OF MEMBERSHIP FUNCTIONS AND BPA VALUES

The rule (1) require defining membership functions. A general approach to this problem is provided
in [5] and [7]. Now, only the functions that are constructed for the present application are described.
Examples of the functions are presented in Fig. 1. They are trapezoid functions with two crucial points
determined as crossover points of distributions that estimate frequency of occurrence of a symptom with
different diagnoses. The other two points are quartiles of the samples [7]. If quartiles do not correspond
to the supposed crossover points, the former are admitted more reliable and the slope of the trapezoid
is assumed as ’steep’ [5]. This is the case observed in the left diagram of Fig. 1 for the right slope
of the leftmost function. During calculations the functions are modified toward triangular and toward
characteristic functions to find the best shape for an application. In Fig. 1 three functions correspond
to the three diagnoses. The membership function for D1 is depicted by solid line, for D2 by dashed
line and for D3 by dotted line. It should be pointed out that the final membership functions are not
symmetrical and their values do not need to sum up to 1, i.e. ∃x

∑
i=1,2,3 µDi(x) 6= 1. The shapes are not

similar to that used by experts, but experiments confirm [5] that such data-driven membership functions
are more efficient in diagnosis support than functions for which the sum is 1 and which are used in the
fuzzy control.

97



MEDICAL DATA ANALYSIS AND MONITORING SYSTEMS

80 100 120 140
0

0.2

0.4

0.6

0.8

1

v
2

µ

80 100 120 140
0

0.2

0.4

0.6

0.8

1

v
2

µ

Fig. 1. Membership functions for v2 variable of the database [8]: the shape at start (left) and the best shape after a modification (right).

The BPA can be calculated as the normalized frequency of occurrence using the functions, providing
that for complex elements minimum precision level must be greater than the ηBPA in the (3) formula.
In this way a separate BPA is found for each diagnosis. The focal elements of different diagnoses are
equivalent in this sense that they include the same Xi medical parameters (1), but individual significance
of these elements is expressed by different BPA values. Let us give as instances three rules - one for
each diagnosis, concerning three focal elements - s1i ∈ SD1, s2i ∈ SD2 and s3i ∈ SD3:

IF V3 is µ1
3, and, V6 is µ1

6 THEN diagnosis is D1, significance: mD1(s
1
i );

IF V3 is µ2
3, and, V6 is µ2

6 THEN diagnosis is D2, significance: mD2(s
2
i );

IF V3 is µ3
3, and, V6 is µ3

6 THEN diagnosis is D3, significance: mD3(s
3
i ).
(7)

The rules can be rewritten in a more compact form as:

IF s1i THEN diagnosis is D1, significance: mD1(s
1
i ); s1i ≡ {V 1

3 , V
1
6 };

IF s2i THEN diagnosis is D2, significance: mD2(s
1
i ); s2i ≡ {V 2

3 , V
2
6 };

IF s3i THEN diagnosis is D3, significance: mD3(s
1
i ); s3i ≡ {V 3

3 , V
3
6 }.

(8)

The notation in (7) and (8) is considerably simplified, but does not violate the general form of (1). The
membership functions µj

3, µ
j
6 as well as values of probability assignments mDj(si), j = 1, 2, 3, differ.

The only things they have in common are domains of the membership functions and crossover points
(if they match quartiles).
The BPA, and Bel values depend on the shape of membership functions as well as on ηBPA and
ηT . In the experiments performed in the present work shapes of membership functions are changed
with a modification coefficient adjusted in the [−0.9, 0.9] interval with 0.1 step. Negative coefficient
means approaching characteristic function which would be reached with the coefficient equal to −1. The
modification with positive coefficient move a slope toward the triangular function. The ηBPA and ηT
thresholds are both changed in the [0.05, 1] interval with 0.05 step. Yet, the present experiment confirms
the previous observations that the best solutions are found for ηBPA ≤ ηT . Each of algorithms and every
set of rules are tested with the mentioned change of membership functions and thresholds to find the
best solution.

5. DETERMINATION OF THE RULE SET

In theory we are free to define any focal element, but in practice it is not an easy task. Since the
DST has few limitations, the set of focal elements decides of an application effectiveness, so much
attention must be payed to rule creating. The first idea is to make the complete set of all combinations
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of conditions, which for 5 variables makes 31 rules. Still, for many variables this is hardly possible and
some of the rules certainly will be superfluous. Thus, the second idea is to join variables for which data
show correlation [5]. This approach is partly successful, but fails in case of categorical variables [6].
The method which is now proposed is based on the assumption that the basic probability values may
indicate focal elements, i.e. symptoms, which are the most promising in a diagnosis.
An experiment is performed in the following way. Firstly, the complete set of rules is made and BPAs
for 3 diagnoses are calculated. Next all values of the three BPAS are sorted and the stage of rule
elimination begins. Each time the rule with the smallest BPA value is eliminated. It is deleted from
each of the 3 sets regardless in which BPA the minimum is found. Afterwards, the new set of focal
elements is used while BPA determining and the knowledge is tested for the database. A classification
error is calculated. In the present experiment its value is just an information about the robustness of the
method, but in future a considerable increase of the error may indicate the end of the elimination. Now,
the elimination process is continued until only 6 rules are left. Premises of five rules concern single
variables v2–v6 and one rule has a complex focal element in the premise. Such an end of calculation
is reasonable for the method, because if single variables in premises are sufficient, there is no need to
use the Dempster-Shafer theory. This part of the experiment should check the possibility to eliminate
superfluous rules from a knowledge base.
The aim of the second part of the experiment is to examine if rules can be constructed from ’promising’
focal elements, i.e. focal elements of the greatest values. At the beginning frequencies of occurrence
are found for single variables. These with the greatest frequencies are used to make focal elements. All
possible combinations of symptoms concerning the variables are made. The BPAs for the sets of focal
elements are calculated and next rules are tested. Then, the elimination algorithm is used to decrease
the number of rules. This algorithm can be of use when many medical parameters have to be considered
and it would be difficult to build the complete set of focal elements.
It is possible and probably more efficient to use the elimination algorithm in such a way that it deletes the
rule that is the least significant in the last calculated BPA. Yet, this way of elimination make calculations
longer. It is easier to test once many rules than to repeat calculations many times for decreasing number
of rules. Thus, the latter manner of elimination can be used only if the set of rules is relatively small.

6. RESULTS

Methods described in sections 1 and 2 with membership functions found in a manner given in section
4 are used to diagnose cases of the database from section 3. At first the elimination algorithm from
section 5 is used. Fig. 2 shows BPAs calculated for all possible, i.e. 31 rules and membership functions
that result in the lowest classification error.
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Fig. 2. BPA values: for the three diagnoses (left) and altogether, sorted (right).
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Fig. 3. The number of wrongly diagnosed cases according to the number of eliminated rules.

The BPA values for the three diagnoses are on the left, while their values, taken together and sorted are
on the right. It is observable in the right diagram that the values are changed gradually, thus rules cannot
be easily divided for the most and least important. Therefore, results of the elimination must be estimated
by means of the classification error. The number of wrongly diagnosed cases according to the number
of eliminated rules are presented in Fig. 3. First of all, it must be noticed that a determination of rules
by means of the proposed method is more efficient than the method used in [6], based on correlation
of variables, which resulted in 9 rules and 6 wrongly diagnosed cases. In the present method, the
number of incorrectly classified cases at the beginning remains the same which means that several rules
are superfluous. Next the number increases, but afterwards it decreases to the same and subsequently
even lower number than at the beginning. Thus, for 7 rules only 3 cases are wrongly diagnosed. An
increase and then a reduction of the error can be intuitively explained as a consequence of removing
rules responsible for rare diagnoses followed by an effect of removing rules for which the diagnosis
is too obvious. Anyway, it must be admitted that this algorithm is better than the approach based on
correlation coefficients - the error is lower and the number of rules is smaller. The both approaches are
better than reference methods [5].
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Fig. 4. The number of occurrence for single-variable focal elements.

The second method of determining the knowledge base is illustrated in Fig. 4 and Fig. 5. Firstly,
the occurrence of focal elements, each concerning a single variable is found. In Fig. 4 it is shown that
for the D1 and D2 diagnoses focal elements with variables v3 and v6 occur must often, while for D2

- elements with variables v3 and v5 are the most frequent. Thus, focal elements with variables v3, v5
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and v6 are created. As the result the set S of focal elements Sl = sli, i = 1, ..., 9 is obtained for each
of the Dl l = 1, 2, 3 diagnosis, in which the following focal elements are included: sl1 = {V l

3 , V
l
5},

sl2 = {V l
3 , V

l
6}, sl3 = {V l

5 , V
l
6}, sl4 = {V l

3 , V
l
5 , V

l
6}, sl5 = {V l

2}, sl6 = {V l
3}, sl7 = {V l

4}, sl8 = {V l
5},

sl9 = {V l
6}. The BPAs for these focal elements are in the upper diagram in Fig. 5.
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Fig. 5. BPAs for 9, 8 and 6 rules (upper, middle and lower diagram, respectively) .

The smallest value is mD1(s4) ≈ 0.096, so sl4 focal elements are eliminated. The next BPAs, for
8 focal elements: slj , j = 1, 2, 3, 5, 6, 7, 8, 9 are in the middle diagram of Fig. 5. Their smallest value
(excluding single-variable focal elements) is mD1(s3) ≈ 0.11, so now sl3 are eliminated. Next BPAs
are determined for slj , j = 1, 2, 5, 6, 7, 8, 9. The focal element with the smallest basic probability is
sl1 ≈ 0.12, so at last the set of focal elements is: sl2 = {V l

3 , V
l
6}, sl5 = {V l

2}, sl6 = {V l
3}, sl7 = {V l

4},
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sl8 = {V l
5}, sl9 = {V l

6}. BPAs for these focal elements (shown in lower diagram of Fig. 5) result in
correct diagnoses except for only 2 cases, which is the best result obtained during the experiments.
The BPA diagrams in Fig. 5 do not show great changes in BPA values when rules are eliminated. Small
BPA changes together with the decreasing error indicate monotonous diagnosis which is an important
advantage of diagnosis support systems.

7. CONCLUSIONS

The paper suggests using the Dempster-Shafer theory extended for focal elements to diagnostic rule
representation and proposes the method of building sets of necessary rules if a database of numerous
medical parameters is given. In this way a knowledge base can be derived from the database. Two
manners of choice of the most appropriate rules are presented, both based on an analysis of the basic
probability assignment. This assignment must be determined for any application of the suggested method,
so much time and effort can be saved on a separate algorithm of rules search. It is also possible that the
proposed way of rules determination could be applicable in other problems than the diagnosis support.
The experiments show that the elimination of rules by means of the proposed method does not disturb
monotonicity of a diagnosis which is an important advantage of diagnosis support systems. The signif-
icance of remaining rules is also gradually changed, which is intuitively right.
The proposed method can be used for an automatic creation of diagnostic rules and an estimation of
their significance on the basis of population data. This facility would be very important for diagnosis
support systems because they are difficult to adapt to different hospital information systems and diverse
medical procedures employed in various countries. An automatic adjustment of diagnostic rules can
make a knowledge transfer easier.
Basic probability assignments can be combined in the framework of the Dempster-Shafer theory.
Moreover, focal elements of the combined assignments do not need to be the same. Thus, a knowledge
base from an expert can be combined with a data-driven rules which could improve a diagnosis support.
The tests were performed for only one database and obviously the method should be further examined,
but primary results are interesting and might be of use for other researchers, thus the author decided to
present them in the paper.
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