Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Normal moveout correction is an essential part of seismic data processing. The accuracy of the result of traditional normal moveout correction methods depends largely on the accuracy of the picked normal moveout correction velocity, which has severe stretching at shallow layers and far-offset distances. However, the problem is usually solved by “mute,” leading to a low stacking number at far offset and a short illumination aperture for exploration. Therefore, a non-stretching normal moveout correction method based on extrapolation interferometry is proposed in this paper. While solving the problem of stretching, it further increases the effective extension length of seismic exploration and improves the coverage number of far-offset reflection points through the conversion between primary and multiple waves. Meanwhile, the introduction of high-order accumulation improves the application range of the method and overcomes the influence of coherent Gaussian noise. In this paper, the method is tested on synthetic data with different noise and applied to two field data. These applications in different data show that the proposed method is a purely data-driven method. The proposed method in this paper does not depend on the accuracy of the velocity picking. It not only achieves non-stretching moveout correction, but also effectively suppresses the effects of random and coherent Gaussian noise.
Wydawca
Czasopismo
Rocznik
Tom
Strony
457--478
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
autor
- State Key Labortaory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology (Beijing), No.11, Xueyuan Road, Beijing 100083, China
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), No.11, Xueyuan Road, Beijing 100083, China
autor
- State Key Labortaory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology (Beijing), No.11, Xueyuan Road, Beijing 100083, China
autor
- The School of Earth and Space Sciences, Peking University, Yanyuan Road, Beijing 100871, China
Bibliografia
- 1. Abedi MM, Riahi MA (2016) Nonhyperbolic stretch-free normal moveout correction. Geophysics 81(6):U87-U95
- 2. Abedi MM, Riahi MA, Stovas A (2019) Three-parameter normal moveout correction in layered anisotropic media: a stretch-free approach. Geophysics 84(3):C129-C142
- 3. An S, Hu T, Cui Y et al (2015) Auto-pick first breaks with complex raypaths for undulate surface conditions. Appl Geophys 12(1):93-100
- 4. An S, Hu T, Peng G (2017) Three-dimensional cumulant-based coherent integration method to enhance first-break seismic signals. IEEE Trans Geosci Remote Sens 55(4):2089-2096
- 5. Bakulin A, Calvert R (2006) The virtual source method: theory and case study. Geophysics 71(4, S):SI139-SI150
- 6. Barnes AE (1992) Another look at nmo stretch. Geophysics 57(5):749-751
- 7. Barrera DF, Schleicher J, Brackenhoff J (2021) Interferometric redatuming by deconvolution and correlation-based focusing. Geophysics 86(1):Q1-Q13
- 8. Bharadwaj P, Schuster GT, Mallinson I (2011) Super-virtual refraction interferometry; theory. SEG Technical Program Expanded Abstracts 30(1):3809-3813
- 9. Biondi E, Stucchi E, Mazzotti A (2014) Nonstretch normal moveout through iterative partial correction and deconvolution. Geophysics 79(4):V131-V141
- 10. Brouwer J (2002) Improved nmo correction with a specific application to shallow-seismic data. Geophys Prospect 50(2):225-237
- 11. Buchholtz H (1972) A note on signal distorion due to dynamic(nmo) corrections. Geophys Prospect 20(2):395-402
- 12. Chen S, Jin S, Li XY et al (2018) Nonstretching normal-moveout correction using a dynamic time warping algorithm. Geophysics 83(1):V27-V37
- 13. Chen Y, Yu S, Ma J (2023) A projection-onto-convex-sets network for 3d seismic data interpolation. Geophysics 88(3):V249-V265
- 14. Claerbout JF (1968) Synthesis of a layered medium from its acoustic transmission response. Geophysics 33(2):264-269
- 15. Curry W, Shan G (2010) Interpolation of near offsets using multiples and prediction-error filters. Geophysics 75(6):WB153-WB164 de Bazelaire E (1988) Normal moveout revisited; inhomogeneous media and curved interfaces. Geophysics 53(2):143-157
- 16. Dunkin J, Levin F (1973) Effect of normal moveout on a seismic pulse. Geophysics 38(4):635-642
- 17. Faccipieri JH, Coimbra TA, Bloot R (2019) Stretch-free generalized normal moveout correction. Geophys Prospect 67(1):52-68
- 18. Fang W, Fu L, Wu M et al (2023) Irregularly sampled seismic data interpolation with self-supervised learning. Geophysics 88(3):V175-V185
- 19. Gholami A, Zand T (2018) Three-parameter radon transform based on shifted hyperbolas. Geophysics 83(1):V39-V48
- 20. Hanafy SM, Al-Hagan O (2012) Super-virtual refraction interferom¬etry: an engineering field data example. Near Surface Geophysics 10(5):443-449
- 21. Hunter J, Pullan S, Burns R et al (1984) Shallow seismic reflection mapping of the overburden-bedrock interface with the engineering seismograph; some simple techniques. Geophysics 49(8):1381-1385
- 22. Jia Y, Ma J (2017) What can machine learning do for seismic data processing? an interpolation application. Geophysics 82(3):V163-V177
- 23. Kazemi N, Siahkoohi HR (2012) Local stretch zeroing nmo correction. Geophys J Int 188(1):123-130
- 24. Liang S, Hu T, Cui D et al (2020) Weak signal enhancement using adaptive local similarity and neighboring super-virtual trace for first arrival picking. J Geophys Eng 17(6):1005-1015
- 25. Liang S, Hu T, Qiao B et al (2022) Reflection seismic interferometry via higher-order cumulants to solve normal moveout stretch. IEEE Geosci Remote Sens Lett 19:1-5
- 26. Liu Z, Si G, Chen X et al (2017) Key preprocessing technology and its application for cbm avo analysis. Acta Geophys 65(5):1069-1079
- 27. Liu Y, Wu G, Zheng Z (2022) Seismic data interpolation without iteration using a t-x-y streaming prediction filter with varying smoothness. Geophysics 87(1):V29-V38
- 28. Ma Y, Luo Y, Kelamis P (2019) Superresolution stacking based on sparse radon transform. Geophysics 84(1):V45-V54
- 29. Masoomzadeh H, Barton PJ, Singh SC (2010) Nonstretch moveout correction of long-offset multichannel seismic data for subbasalt imaging: Example from the north atlantic. Geophysics 75(4):R83-R91
- 30. Mikesell D, van Wijk K, Calvert A et al (2009) The virtual refraction: useful spurious energy in seismic interferometry. Geophysics 74(3):A13-A17
- 31. Mikesell TD, van Wijk K, Ruigrok E et al (2012) A modified delaytime method for statics estimation with the virtual refraction. Geophysics 77(6):A29-A33
- 32. Miller RD (1992) Normal moveout stretch mute on shallow-reflection data. Geophysics 57(11):1502-1507
- 33. Naghizadeh M, Sacchi MD (2009) f-x adaptive seismic-trace interpolation. Geophysics 74(1):V9-V16
- 34. Perroud H, Tygel M (2004) Nonstretch nmo. Geophysics 69(2):599-607
- 35. Qiao B, Guo P, Wang P et al (2015) Retrieval of super-virtual refraction by cross-correlation. Geophys Prospect 63(3):552-566
- 36. Qiao B, Wang Q, Lei Y (2021) Correlation-based interferometry method to enhance near-surface reflection signals in surface active seismic exploration. IEEE Trans Geosci Remote Sens 59(12):10697-10707
- 37. Qiao B, Lu Y, Li Q et al (2022) Data-driven reflection imaging based on seismic interferometry. Geophysics 87(4):Q15-Q29
- 38. Rashed M (2014) Fifty years of stacking. Acta Geophys 62(3):505-528
- 39. Rupert JHGB, Chun (1975) The block move sum normal moveout correction. Geophysics 40(1):17-24
- 40. Shao J, Wang Y, Chang X (2021) Radon domain interferometric interpolation of sparse seismic data. Geophysics 86(5):WC89-WC104
- 41. Shatilo A, Aminzadeh F (2000) Constant normal-moveout (cnmo) correction: a technique and test results. Geophys Prospect 48(3):473-488
- 42. Sheng H, Wu X, Zhang B (2022) Wavelet estimation and nonstretching nmo correction. Geophysics 87(3):V193-V203
- 43. Spitz S (1991) Seismic trace interpolation in the f-x domain. Geophysics 56(6):785-794
- 44. Trad D (2003) Interpolation and multiple attenuation with migration operators. Geophysics 68(6):2043-2054
- 45. Wang D, Yuan S, Liu T et al (2021) Inversion-based non-stationary normal moveout correction along with prestack high-resolution processing. J Appl Geophys 191:104379
- 46. Wapenaar K, Fokkema J (2006) Green’s function representations for seismic interferometry. Geophysics 71(4, S):SI33-SI46
- 47. Xu Z, Zhang F, Juhlin C et al (2021) Extrapolated supervirtual refraction interferometry. Geophysical Gournal Int 227(2):1439-1463
- 48. Xue Y, Xiang J, Xu X (2020) Novel wide-angle avo attributes using rational function. Acta Geophys 68(1):123-132
- 49. Yuan S, Wei W, Wang D et al (2020) Goal-oriented inversion-based nmo correction using a convex l2,1-norm. IEEE Geosci Remote Sens Lett 17(1):162-166
- 50. Zhang B, Zhang K, Guo S et al (2013) Nonstretching nmo correction of prestack time-migrated gathers using a matching-pursuit algorithm. Geophysics 78(1):U9-U18
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c60cb655-8b2e-4852-8cbd-2a516ef3136b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.