PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Optimising the Production Process of Rieter Air Jet Spun Yarns and a Model for Prediction of their Strength

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Optymalizacja procesu i model przewidywania wytrzymałości przędz wytworzonych metodą przędzenia pneumatycznego
Języki publikacji
EN
Abstrakty
EN
In this study, the effect of yarn linear density, delivery speed and nozzle pressure on Rieter air jet spun yarn strength was investigated. A multiple regression model was used to study the combined effect of these parameters and response surfaces were obtained. Results showed that by increasing the nozzle pressure, the yarn tensile strength improves till a specific limit, then it deteriorates afterwards. Based on the different combinations of processing variables, optimal running conditions were obtained. Along with the experiment, a mathematical model that predicts air jet spun yarn strength at a short gauge length has been presented. Fibre parameters in addition to yarn structural parameters were used to obtain the theoretical yarn strength. The results showed a satisfactory agreement between the experimental and theoretical results.
PL
Zbadano wpływ gęstości liniowej przędzy, prędkości podawania i ciśnienia dyszy na wytrzymałość przędz wytworzonych metodą przędzenia pneumatycznego. W tym celu zastosowano model regresji wielokrotnej. Wyniki pokazały, że zwiększając ciśnienia w dyszy, wytrzymałość na rozciąganie przędzy poprawia się do określonej granicy, a następnie ulega pogorszeniu. W oparciu o różne kombinacje zmiennych procesowych uzyskano optymalne warunki pracy. Wraz z eksperymentem przedstawiono model matematyczny pozwalający przewidzieć wytrzymałość przędzy. Teoretyczną wytrzymałość przędz określono na podstawie parametrów włókien i parametrów strukturalnych przędz. Wyniki wykazały zadowalającą zgodność pomiędzy wynikami eksperymentalnymi i teoretycznymi.
Rocznik
Strony
36--41
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Technical University of Liberec, Department of Textile Technology, Faculty of Textile Engineering, Liberec, Czech Republic
autor
  • Istanbul Technical University, Department of Textile Engineering, Faculty of Textile Technologies and Design, Istanbul, Turkey
Bibliografia
  • 1. Kostajnšek K, Dimitrovski K. Comparative Study on the Properties of Vortex and Ring Spun Yarn and the Properties of Woven Fabrics Containing Those Yarns in Weft. Fibres & Textiles in Eastern Europe 2016; 24, 2(116): 59-65. DOI: 10.5604/12303666.1191428.
  • 2. Zou Z. Study of the stress relaxation property of vortex spun yarn in comparison with airjet spun yarn and ring spun yarn. Fibres & Textiles in Eastern Europe 2012; 20, 1(90): 2832.
  • 3. Erdumlu N, Ozipek B, Oxenham W. Vortex spinning technology. Text. Prog. 2012; 44, 3– 4: 141–174.
  • 4. United States Patent and Trademark Office. US Patent 2007/0125062 A1, http://www.uspto.gov,” 2007.
  • 5. Erdumlu N, Ozipek B. Effect of the draft ratio on the properties of vortex spun yarn. Fibres & Textiles in Eastern Europe 2010; 80, 3: 38–42.
  • 6. Basal G. Effects of some process parameters on the structure and properties of vortex spun yarn. Text. Res. J. 2006; 76, 6: 492–499.
  • 7. Erdumlu N, Oxenham W, Ozipek B. The impact of combing and processing parameters on the structure and properties of fine count vortex yarns. Text. Res. J. 2013; 83, 4: 396-405.
  • 8. Gordon S. The effect of short fibre and nep levels on Murata vortex spinning efficiency and product quality. Final Rep. To CanC, CSIRO Text. Fibre Technol. 2001; October: 1-14.
  • 9. Zou Z Y. Influence of the Yarn Formation Process on the Characteristics of Viscose Fabric Made of Vortex Coloured Spun Yarns. Fibres & Textiles in Eastern Europe 2015, 23, 3(111): 58–63.
  • 10. Rajamanickam R, Hansen S M, Jayaraman S. Studies on fiber–process–structure–property relationships in air-jet spinning. part II: model development. J. Text. Inst. 1998; 89, 2: 243–265.
  • 11. Ortlek H G. Effect of some variables on properties of 100% cotton vortex spun yarn. Text. Res. J. 2005; 75, 6: 458–461.
  • 12. Ortlek H G, Nair F, Kilik R, Guven K. Effect of spindle diameter and spindle working period on the properties of 100% viscose MVS yarns. Fibres & Textiles in Eastern Europe 2008; 16, 3: 17–20.
  • 13. Johnson W M. The impact of MVS machine settings and finishing applications on yarn quality and knitted fabric hand. MSc Thesis, Institute of Textile Technology, Charlottesville, Virginia, USA, 2002.
  • 14. Sharma D. Performance and low-stress characteristics of polyester-cotton MVS yarns. Indian J. Fibre Text. Res. 2004; 29, September: 301–307.
  • 15. Onder E, Baser G. A comprehensive stress and breakage analysis of staple fiber yarns, part I: stress analysis of a staple yarn based on a yarn geometry of conical helix fiber paths. Text. Res. J. 1996; 66, 10: 634–640.
  • 16. Zurek W, Frydrych I, Zakrzewksi S. A method of predicting the strength and breaking strain of cotton yarn. Text. Res. J. 1987; 57, 8: 439–444.
  • 17. Ning P. Development of a constitutive theory for short fiber yarns, part II: mechanics of staple yarn with slippage effect. Text. Res. J. 1993; 63, 9: 504–514.
  • 18. Aggarwal S K. A model to estimate the breaking elongation of high twist ring spun cotton yarns, part I: derivation of the model for yarns from single cotton varieties. Text. Res. J. 1989; 59, 11: 691–695.
  • 19. Zubair M, Neckář B, Malik Z A. Predicting Specific Stress of Cotton Staple Ring Spun Yarns: Experimental and Theoretical Results. Fibres & Textiles in Eastern Europe 2017; 25, 2(122): 43–47. DOI: 10.5604/12303666.1228166
  • 20. Jiang X Y, Hu J L, Postle R. A new tensile model for rotor spun yarns. Text. Res. J. 2002; 72, 10: 892–898.
  • 21. Krause H W, Soliman H A. Theoretical study of the strength of single jet false twist spun yarns. Text. Res. J. 1990; 60, 6: 309–318.
  • 22. Xie Y, Oxenham W, Grosberg P. 25—A study of the strength of wrapped yarns, part II: computation and experimental. J. Text. Inst. 1986; 77, 5: 305–313.
  • 23. Rajamanickam R, Hansen S M, Jayaraman S. Analysis of the modeling methodologies for predicting the strength of air-jet spun yarns. Text. Res. J. 1997; 67, 1: 39–44.
  • 24. Rajamanickam R, Hansen S M, Jayaraman S. A model for the tensile fracture behavior of air-jet spun yarns. Text. Res. J. 1998; 68, 9: 654–662.
  • 25. Neckar and B, Das D. A stochastic approach to yarn strength, in Seventh Asian Textile Conference, 2003.
  • 26. Tyagi G K, Sharma D, Salhotra K R. Process-structure-property relationship of polyestercotton MVS yarns, part I: influence of processing variables on yarn structural parameters. Indian J. Fibre Text. Res. 2004; 29, 4: 419–428.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c60c86c3-e624-4534-932d-e050b980233e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.