PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Insights into the multistep transformation of titanate nanotubes into nanowires and nanoribbons

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Different types of titanate one-dimensional nanostructured materials were synthesized and characterized using scanning and transmission electron microscopy, X-ray diffraction and Raman spectroscopy. The results presented in this work unquestionably showed dependence of morphology and structure of the titanate nanopowders on parameters of hydrothermal synthesis. It was found that nanotubes, nanowires and nanoribbons are three unavoidable kinetic products of hydrothermal reaction. Moreover, increasing temperature of reaction or hydrothermal treatment duration results in acceleration of nanotube-nanowire-nanoribbon transformation. However, the sequence of titanate morphology transformation is invariable. The detailed studies further revealed that the crystal structure of hydrothermally prepared nanotubes and nanowires are indistinguishable but the determination of the exact structure is practically impossible. Because of higher crystallinity, the structure of nanoribbons can be established. It was shown that it corresponds to the monoclinic layered trititanic acid H2Ti3O7 and is isostructural with sodium derivatives Na2-xHxTi3O7.nH2O (with x near 2).
Wydawca
Rocznik
Strony
691--702
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
  • Wrocław University of Technology, Department of Mechanics, Materials Science and Engineering, Smoluchowskiego 25, 50-370 Wrocław, Poland
autor
  • Wrocław University of Technology, Department of Mechanics, Materials Science and Engineering, Smoluchowskiego 25, 50-370 Wrocław, Poland
autor
  • Wrocław University of Technology, Department of Mechanics, Materials Science and Engineering, Smoluchowskiego 25, 50-370 Wrocław, Poland
autor
  • Wrocław University of Technology, Faculty of Chemistry, Smoluchowskiego 23, 50-370 Wroclaw, Poland
Bibliografia
  • [1] TIWARI J.N., TIWARI R.N., KIM K.S., Prog. Mater. Sci., 57 (2012), 724.
  • [2] FANG X., ZHANG L., J. Mater. Sci. Technol., 22 (2006), 1.
  • [3] XIA Y., YANG P., SUN Y., WU Y., MAYERS B., GATES B., YIN Y., KIM F., YAN H., Adv. Mater., 15 (5) (2003), 353.
  • [4] IIJIMA S., Nature, 354 (1991), 56.
  • [5] RAMASAMY P., LIM D.-H., KIM J., KIM J., RSC Adv., 4 (2014), 2858.
  • [6] TOHR S., Inorganic and Metallic Nanotubular Materials, Springer, Berlin Heidelberg, 2010, p. 17.
  • [7] BAVYKIN D.V., WALSH F.C., Eur. J. Inorg. Chem., 8 (2009), 977.
  • [8] BAVYKIN D.V., FRIEDRICH J.M., WALSH F.C., Adv. Mater., 18 (2006), 2807.
  • [9] YUAN Z.-Y., SU B.-L., Colloid. Surface. A, 241 (2004), 173.
  • [10] MORGAN D.L., ZHU H.-Y., FROST R.L., WACLAWIK E.R., Chem. Mater., 20 (2008), 3800.
  • [11] LAN Y., GAO X., ZHU H., ZHENG Z., YAN T., WU F., RINGER S.P., SONG D., Adv. Funct. Mater., 15 (2005), 1310.
  • [12] WU D., LIU J., ZHAO X., LI A., CHEN Y., MING N., Chem. Mater., 18 (2006), 547.
  • [13] LU H., ZHAO J., LI L., ZHENG J., ZHANG L., GONG L., WANG Z., ZHU Z., Chem. Phys. Lett., 508 (2011), 258.
  • [14] MORGAN D.L., TRIANI G., BLACKFORD M.G., RAFTERY N.A., FROST R.L., WACLAWIK E.R., J. Mater. Sci., 46 (2011), 548.
  • [15] YLHAINEN ¨ E.K., NUNES M.R., SILVESTRE A.J., MONTEIRO O.C., J. Mater. Sci., 47 (2012), 4305.
  • [16] MA R., BANDO Y., SASAKI T., Chem. Phys. Lett., 380 (2003), 577.
  • [17] PRADHAN S.K., MAO Y., WONG S.S., CHUPAS P., PETKOV V., Chem. Mater., 19 (2007), 6180.
  • [18] GATESHKI M., CHEN Q., PENG L.-M., CHUPAS P., PETKOV V., Z. Kristallogr., 222 (2007), 612.
  • [19] SUZUKI Y., YOSHIKAWA S., J. Mater. Res., 19 (2004), 982.
  • [20] FERREIRA O.P., SOUZA FILHO A.G, FILHO J.M., ALVES O.L., J. Braz. Chem. Soc., 17 (2006), 393.
  • [21] VIANA B.C., FERREIRA O.P., SOUZA FILHO A.G., FILHO J.M., ALVES O.L., J. Braz. Chem. Soc., 20 (2009), 167.
  • [22] ZHANG W.F., HE Y.L., ZHANG M.S., YIN Z., CHEN Q., J. Phys. D Appl. Phys., 33 (2000), 912.
  • [23] KRISHNAMURTI D., P. Indian AS-Sec. A, 55 (1962), 290.
  • [24] GAO T., FJELLVLG ´ H., NORBY P., Inorg. Chem., 48 (2009), 1423.
  • [25] MA R., FUKUDA K., SASAKI T., OSADA M., BANDO Y., J. Phys. Chem. B, 109 (2005), 6210.
  • [26] RISS A., BERGER T., STANKIC S., BERNARDI J., KNOZINGER ¨ E., DIWALD O., Angew. Chem. Int. Edit., 47 (2008), 1496.
  • [27] GAJOVIC ´ A., FRISCIC I., PLODINEC M., IVEKOVIC ´ D., J. Mol. Struct., 924 – 926 (2009), 183.
  • [28] QAMAR M., YOON C.R., OH H.J., KIM D.H., JHO J.H., LEE K.S., LEE W.J., LEE H.G., KIM S.J., Nanotechnology, 17 (2006), 5922.
  • [29] GOUADEC G., COLOMBAN P., Prog. Cryst. Growth Ch., 53 (1) (2007), 1.
  • [30] KOLENKO Y.V., KOVNIR K.A., GAVRILOV A.I., GARSHEV A.V., FRANTTI J., LEBEDEV O.I., CHURAGULOV B.R., VAN TENDELOO G., YOSHIMURA M., J. Phys. Chem. B, 110 (2006), 4030.
  • [31] PAPP S., KOR ˜ OSI ¨ L., MEYNEN V., COOL P., VANSANT E.F., DEK ´ ANY ´ I., J. Solid State Chem., 178 (2005), 1614.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c60bde79-f131-4ac8-a994-b3849f98cb0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.