PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diurnal and seasonal DOC and POC variability in the land-locked sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Organic matter is a minor yet important component of the marine environment. The aim of this study was to investigate the diurnal and seasonal changes in dissolved and particulate organic carbon (DOC and POC, respectively). Thus, DOC and POC as well as chlorophyll a (Chl a), δ13C, NO3, NO2, NH4+, PO43-, salinity, pH, and temperature were regularly measured in samples collected for 24 h (2-h resolution) in the Gdańsk Deep (54°44.730′N, 19°08.531′E) at three water depths (1, 10, and 40 m) during sampling campaigns in 2011 (May), 2014 (May), and 2015 (January, March, May, July, September, November). Seasonal variations in DOC and POC followed the seasonality of Chl a (proportional trend) and nutrients (reverse trend) concentrations. Diurnal oscillations were detected in six out of the eight measurement series. The strongest diurnal variability in both POC and DOC occurred in May 2011 and March 2015, when phytoplankton activity was highest (high Chl a). The surprisingly low δ13C values (range: −28‰ to −24‰) measured over the course of the study revealed the gaps in our knowledge of the isotopic characteristics of terrestrial- vs. marine-derived particulate organic matter.
Słowa kluczowe
Czasopismo
Rocznik
Strony
379--388
Opis fizyczny
Bibliogr. 40 poz., mapy, wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • [1] Burska, D., Pryputniewicz, D., Falkowska, L., 2005. Stratification of particulate organic carbon and nitrogen in the Gdańsk Deep (southern Baltic Sea). Oceanologia 47 (2), 201-217.
  • [2] Dzierzbicka-Głowacka, L., Kuliński, K., Maciejewska, A., Jakacki, J., Pempkowiak, J., 2010. Particulate organic carbon in the southern Baltic Sea. Numerical simulation and experimental data. Oceanologia 52 (4), 62-648, http://dx.doi.org/10.5697/oc.52-4.621.
  • [3] Emerson, S., Hedges, J. I., 1988. Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3 (5), 621-634, http://dx.doi.org/10.1029/PA003i005p00621.
  • [4] Falkowska, L., Burska, D., Bolałek, J., 1998. Short-term changes in the hydrochemical constituents in the water column of the Gdańsk Deep (Baltic Sea) in spring. Part 1. Nutrient and oxygen concentrations in relation to the density stratification. Oceanologia 40 (2), 83-104.
  • [5] Fontugne, M. R., Jouannea, J. M., 1987. Modulation of the particulate organic carbon flux to the ocean by a macrotidal estuary: evidence from measurements of carbon isotopes in organic matter from the Gironde system. Estuar. Coast. Shelf Sci. 24 (3), 377-387, http://dx.doi.org/10.1016/0272-7714(87)90057-6.
  • [6] Gao, K., Helbling, E. W., Häder, D. P., Hutchins, D. A., 2012. Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Mar. Ecol.-Prog. Ser. 470, 167-189, http://dx.doi.org/10.3354/meps10043.
  • [7] Gocke, K., Kremling, K., Osterroht, C., Wenck, A., 1987. Short term fluctuations of microbial variables during different seasons in coastal Baltic waters. Mar. Ecol.-Prog. Ser. 40, 137-144.
  • [8] Gustafsson, E., Deutsch, B., Gustafsson, B. G., Humborg, C., Mörth, C.-M., 2014. Carbon cycling in the Baltic Sea –— the fate of allochthonous organic carbon and its impact on air-sea CO2 exchange. J. Marine Syst. 129, 289-302, http://dx.doi.org/10.1016/j.jmarsys.2013.07.005.
  • [9] Hedges, J. I., 2002. Why dissolved organics matter. In: Hansell, D. A., Carlson, C. A. (Eds.), Biogeochemistry of Marine Dissolved Organic Matter. Elsevier Sci., San Diego, 1-33, http://dx.doi.org/10.1016/B978-012323841-2/50003-8.
  • [10] Hoikkala, L., Kortelainen, P., Soinne, H., Kuosa, H., 2015. Dissolved organic matter in the Baltic Sea. J. Marine Syst. 142, 47-61, http://dx.doi.org/10.1016/j.jmarsys.2014.10.005.
  • [11] Hoikkala, L., Lahtinen, T., Perttilä, M., Lignell, R., 2012. Seasonal dynamics of dissolved organic matter on a costal salinity gradient in the northern Baltic Sea. Cont. Shelf Res. 45, 1-14, http://dx.doi.org/10.1016/j.csr.2012.04.008.
  • [12] Ilis, E., Keskitalo, J., 2008. The response of phytoplankton to increased temperature in the Loviisa archipelago, Gulf of Finland. Boreal Environ. Res. 13 (6), 503-516.
  • [13] Kuliński, K., Hammer, K., Schneider, B., Schulz-Bull, D., 2016. Remineralization of terrestrial dissolved organic carbon in the Baltic Sea. Mar. Chem. 181, 10-17, http://dx.doi.org/10.1016/j.marchem.2016.03.002.
  • [14] Kuliński, K., Pempkowiak, J., 2008. Dissolved organic carbon in the southern Baltic Sea: quantification of factors affecting its distribution. Estuar. Coast. Shelf Sci. 78 (4), 38-44, http://dx.doi.org/10.1016/j.ecss.2007.11.017.
  • [15] Kuliński, K., Pempkowiak, J., 2011. The carbon budget of the Baltic Sea. Biogeosciences 8 (11), 3219-3230, http://dx.doi.org/10.5194/bg-8-3219-2011.
  • [16] Kuliński, K., Schneider, B., Hammer, K., Machulik, U., Schulz-Bull, D., 2014. The influence of dissolved organic matter on the acid-base system of the Baltic Sea. J. Marine Syst. 132, 106-115, http://dx.doi.org/10.1016/j.jmarsys.2014.01.011.
  • [17] Kuliński, K., She, J., Pempkowiak, J., 2011. Short and medium term dynamics of the carbon exchange between the Baltic Sea and the North Sea. Cont. Shelf Res. 31 (15), 1611-1619, http://dx.doi.org/10.1016/j.csr.2011.07.001.
  • [18] Lass, H. U., Matthäus, W., 2008. General oceanography of the Baltic Sea. In: Feistel, R., Nausch, G., Wasmund, N. (Eds.), State and Evolution of the Baltic Sea, 1952-2005: A Detailed 50-Year Survey of Meteorology and Climate, Physics, Chemistry, Biology, and Marine Environment. Wiley & Sons, Hoboken, 5-43, http://dx.doi.org/10.1002/9780470283134.ch2.
  • [19] Lorentz, C. J., 1967. Determination of chlorophyll in pheopigments: spectrophotometric equations. Limnol. Oceanogr. 12 (2), 343-346, http://dx.doi.org/10.4319/lo.1967.12.2.0343.
  • [20] Maciejewska, A., Pempkowiak, J., 2014. DOC and POC in the water column of the southern Baltic. Part I. Evaluation of factors influencing sources, distribution and concentration dynamics of organic matter. Oceanologia 56 (3), 523-548, http://dx.doi.org/10.5697/oc.55-3.523.
  • [21] Maciejewska, A., Pempkowiak, J., 2015. DOC and POC in the southern Baltic Sea. Part II. Evaluation of factors affecting organic matter concentrations using multivariate statistical methods. Oceanologia 57 (2), 168-176, http://dx.doi.org/10.1016/j.oceano.2014.11.003.
  • [22] Mopper, K., Lindroth, P., 1982. Diel and depth variations in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis. Limnol. Oceanogr. 27 (2), 336-347, http://dx.doi.org/10.4319/lo.1982.27.2.0336.
  • [23] Nausch, G., Nehring, D., Nagel, K., 2008. Nutrient concentrations, trends and their relation to eutrophication. In: Feistel, R., Nausch, G., Wasmund, N. (Eds.), State and Evolution of the Baltic Sea, 1952-2005: A Detailed 50-Year Survey of Meteorology and Climate, Physics, Chemistry, Biology, and Marine Environment. Wiley & Sons, Hoboken, 337-366, http://dx.doi.org/10.1002/9780470283134.ch12.
  • [24] Omstedt, A., Humborg, C., Pempkowiak, J., Perttila, M., Rutgersson, A., Schneider, B., Smith, B., 2014. Biogeochemical control of the coupled CO2-O2 system of the Baltic Sea: a review of the results of Baltic-C. AMBIO 43 (1), 49-59, http://dx.doi.org/10.1007/s13280-013-0485-4.
  • [25] Osterroth, C., Wenck, A., Kremling, K., Gocke, K., 1985. Concentration of dissolved organic copper in relation to other chemical and biological parameters in coastal Baltic waters. Mar. Ecol.-Prog. Ser. 22, 273-279.
  • [26] Parsons, T. R., 1966. Determination of Photosynthetic Pigments in Sea-water. A Survey of Methods. UNESCO, Paris, 69 pp.
  • [27] Pempkowiak, J., 1983. C18 reversed-phase trace enrichment of shortand long-chain (C2-C8-C20) fatty acids from dilute aqueous solutions and sea water. J. Chromatogr. A 258, 93-102, http://dx.doi.org/10.1016/S0021-9673(00)96401-X.
  • [28] Rak, D., 2016. The inflow in the Baltic Proper as recorded in January-February 2015. Oceanologia 58 (3), 241-247, http://dx.doi.org/10.1016/j.oceano.2016.04.001.
  • [29] Salley, B. A., Bradshaw, J. B., Neilson, B. J., 1986. Results of Comparative Studies of Preservation Technique for Nutrient Analysis on Water Samples. Virginia Inst. Mar. Sci., Gloucester Point, 96 pp.
  • [30] Shinomura, Y., Iwata, T., Suzuki, Y., 2005. Diel changes in dissolved organic carbon in the upper layer of Sugura Bay, Japan. Estuar. Coast. Shelf Sci. 63 (4), 699-709, http://dx.doi.org/10.1016/j.ecss.2004.10.006.
  • [31] Siegel, H., Gerth, M., 2015. Development of Sea Surface Temperature (SST) in the Baltic Sea 2014. HELCOM Baltic Sea Environment Fact Sheets, 8 pp.
  • [32] Sikorowicz, G., Falkowska, L., Burska, D., Dunajska, D., Pryputniewicz, D., Magulski, R., Lewandowska, A., 2005. Diurnal variations in nitrogen, phosphorous and iron compounds in the southern Baltic Sea. Oceanologia 47 (2), 243-263.
  • [33] Strickland, J. D. H., Parsons, T. R., 1967. A Practical Handbook of Seawater Analysis. Fish. Res. Board Canada Bull., Ottawa, 310 pp.
  • [34] Szczepańska, A., Zaborska, A., Maciejewska, A., Kuliński, K., Pempkowiak, J., 2012. Distribution and origin of organic matter in the Baltic Sea sediments dated with 210Pb and 137Cs. Geochronometria 39 (1), 1-9, http://dx.doi.org/10.2478/s13386-011-0058-x.
  • [35] Szymczycha, B., Maciejewska, A., Winogradow, A., Pempkowiak, J., 2014. Could submarine groundwater discharge be a significant carbon source to the southern Baltic Sea? Oceanologia 56 (2), 327-347, http://dx.doi.org/10.5697/oc.56-2.327.
  • [36] Thomas, H., Pempkowiak, J., Wulff, F., Nagel, K., 2003. Autotrophy, nitrogen accumulation, and nitrogen limitation in the Baltic Sea: a paradox or a buffer for eutrophication? Geophys. Res. Lett. 30 (21), 2130, 4 pp., http://dx.doi.org/10.1029/2003GL017937.
  • [37] Voipio, A., 1981. The Baltic Sea. Elsevier, Amsterdam, 148 pp.
  • [38] Voss, M., Liskow, I., Pastuszak, M., Rüb, D., Schulte, U., Dippner, J. W., 2005. Riverine discharge into a coastal bay: a stable isotope study in the Gulf of Gdansk, Baltic Sea. J. Marine Syst. 57 (1-2), 127-145, http://dx.doi.org/10.1016/j.jmarsys.2005.04.002.
  • [39] Wasmund, N., Naush, G., Matthäus, W., 1998. Phytoplankton spring blooms in the southern Baltic Sea — spatio-temporal development and long-term trends. J. Plankton Res. 20 (6), 1099-1117, http://dx.doi.org/10.1093/plankt/20.6.1099.
  • [40] Wasmund, N., Uhlig, S., 2003. Phytoplankton trends in the Baltic Sea. J. Mar. Sci. 60 (2), 177-186, http://dx.doi.org/10.1016/S1054-3139(02)00280-1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c5f19e3e-4367-4386-a78c-1e3ca19eefd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.